Abstract. Fluid flow in a charged porous medium generates electric potentials called streaming potential (SP). The SP signal is related to both hydraulic and electrical properties of the soil. In this work, global sensitivity analysis (GSA) and parameter estimation procedures are performed to assess the influence of hydraulic and geophysical parameters on the SP signals and to investigate the identifiability of these parameters from SP measurements. Both procedures are applied to a synthetic column experiment involving a falling head infiltration phase followed by a drainage phase. GSA is used through variance-based sensitivity indices, calculated using sparse polynomial chaos expansion (PCE). To allow high PCE orders, we use an efficient sparse PCE algorithm which selects the best sparse PCE from a given data set using the Kashyap information criterion (KIC). Parameter identifiability is performed using two approaches: the Bayesian approach based on the Markov chain Monte Carlo (MCMC) method and the first-order approximation (FOA) approach based on the Levenberg–Marquardt algorithm. The comparison between both approaches allows us to check whether FOA can provide a reliable estimation of parameters and associated uncertainties for the highly nonlinear hydrogeophysical problem investigated. GSA results show that in short time periods, the saturated hydraulic conductivity (Ks) and the voltage coupling coefficient at saturation (Csat) are the most influential parameters, whereas in long time periods, the residual water content (θs), the Mualem–van Genuchten parameter (n) and the Archie saturation exponent (na) become influential, with strong interactions between them. The Mualem–van Genuchten parameter (α) has a very weak influence on the SP signals during the whole experiment. Results of parameter estimation show that although the studied problem is highly nonlinear, when several SP data collected at different altitudes inside the column are used to calibrate the model, all hydraulic (Ks,θs,α,n) and geophysical parameters (na,Csat) can be reasonably estimated from the SP measurements. Further, in this case, the FOA approach provides accurate estimations of both mean parameter values and uncertainty regions. Conversely, when the number of SP measurements used for the calibration is strongly reduced, the FOA approach yields accurate mean parameter values (in agreement with MCMC results) but inaccurate and even unphysical confidence intervals for parameters with large uncertainty regions.
Abstract. Fluid flow in a charged porous medium generates electric potentials called Streaming potential (SP). The SP signal is related to both hydraulic and electrical properties of the soil. In this work, Global Sensitivity Analysis (GSA) and parameter estimation procedures are performed to assess the influence of hydraulic and geophysical parameters on the SP signals and to investigate the identifiability of these parameters from SP measurements. Both procedures are applied to a synthetic column experiment involving a falling head infiltration phase followed by a drainage phase. GSA is used through variance-based sensitivity indices, calculated using sparse Polynomial Chaos Expansion (PCE). To allow high PCE orders, we use an efficient sparse PCE algorithm which selects the best sparse PCE from a given data set using the Kashyap Information Criterion (KIC). Parameter identifiability is performed using two approaches: the Bayesian approach based on the Markov Chain Monte Carlo (MCMC) method and the First-Order Approximation (FOA) approach based on the Levenberg Marquardt algorithm. GSA results show that at short times, the saturated hydraulic conductivity (KS) and the voltage coupling coefficient at saturation (Csat) are the most influential parameters, whereas, at long times, the residual water content (σr), the Mualem-van Genuchten parameter (n) and the Archies’s saturation exponent (na) become influential with strong interactions between them. The Mualem-van Genuchten parameter (α) has a very weak influence on the SP signals during the whole experiment. Results of parameter estimation show that, although the studied problem is highly nonlinear, when several SP data collected at different altitudes inside the column are used to calibrate the model, all hydraulic (KS, σr, and n) and geophysical (na and Csat) parameters can be reasonably estimated from the SP measurements. Further, in this case, the FOA approach provides accurate estimations of both mean parameter values and uncertainty regions. Conversely, when the number of SP measurements used for the calibration is strongly reduced, the FOA approach yields accurate mean parameter values (in agreement with MCMC results) but inaccurate and even unphysical confidence intervals for parameters with large uncertainty regions.
Numerical modeling has become an irreplaceable tool for the investigation of water flow and solute transport in the unsaturated zone. The use of this tool for real situations is often faced with lack of knowledge of hydraulic and soil transport parameters. In this study, advanced experimental and numerical techniques are developed for an accurate estimation of the soil parameters. A laboratory unsaturated flow and solute transport experiment is conducted on a large undisturbed soil column of around 40 cm length. Bromide, used as a nonreactive contaminant, is injected at the surface of the undisturbed soil, followed by a leaching phase. The pressure measurements at different locations along the soil column as well as the outflow bromide concentration are collected during the experiment and used for the statistical calibration of flow and solute transport. The Richards equation, combined with constitutive relations for water content and permeability, is used to describe unsaturated flow. Both linear and non-equilibrium mobile–immobile transport models are investigated for the solute transport. All hydraulic and mass transport parameters are inferred using a one-step Bayesian estimation with the Markov chain Monte Carlo sampler. The results prove that the pressure and concentration measurements are able to identify almost all hydraulic and mass transport parameters. The mobile–immobile transport model better reproduces the infiltration experiment. It produces narrower uncertainty intervals for soil parameters and predictive output concentrations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.