Many methods of segmentation using detection of segmentation points or where the location of segmentation points is expected before the segmentation process, the validity of segmentation points is verified by using ANNs. In this paper apply a novel method to detect correctly of location segmentation points by detect of peaks with neural networks for Arabic word. This method employs baseline and peaks identification; where using two steps to segmenting text. Where peaks identification function is applied which at the subword segment level to frame the minimum and maximum peaks, and baseline detection. Where these two steps have led to the best result through the model depends on minimum peaks attained by utilising a stroke operator with a view to extracting potential points of segmentation, and determining the baseline procedure was developed to approximate the parameters. Where this method has yielded highly accurate positive results for Arabic characters' segmentation with four kinds of handwritten datasets as AHDB, IFN-ENIT, AHDB-FTR and ACDAR. Earlier results showed that the use of EDMS to MLP_ANN gives better results than GLCM and MOMENT in different groups and gives results of EDMS features on MNN with an accuracy level of 95.09% classifier for IFN-ENIT set of data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.