BackgroundAmyotrophic lateral sclerosis (ALS) is a fatal, progressive neurodegenerative disease characterized by rapid loss of muscle control and eventual paralysis due to the death of large motor neurons in the brain and spinal cord. Growth factors such as glial cell line derived neurotrophic factor (GDNF) are known to protect motor neurons from damage in a range of models. However, penetrance through the blood brain barrier and delivery to the spinal cord remains a serious challenge. Although there may be a primary dysfunction in the motor neuron itself, there is also increasing evidence that excitotoxicity due to glial dysfunction plays a crucial role in disease progression. Clearly it would be of great interest if wild type glial cells could ameliorate motor neuron loss in these models, perhaps in combination with the release of growth factors such as GDNF.Methodology/Principal FindingsHuman neural progenitor cells can be expanded in culture for long periods and survive transplantation into the adult rodent central nervous system, in some cases making large numbers of GFAP positive astrocytes. They can also be genetically modified to release GDNF (hNPCGDNF) and thus act as long-term ‘mini pumps’ in specific regions of the rodent and primate brain. In the current study we genetically modified human neural stem cells to release GDNF and transplanted them into the spinal cord of rats over-expressing mutant SOD1 (SOD1G93A). Following unilateral transplantation into the spinal cord of SOD1G93A rats there was robust cellular migration into degenerating areas, efficient delivery of GDNF and remarkable preservation of motor neurons at early and end stages of the disease within chimeric regions. The progenitors retained immature markers, and those not secreting GDNF had no effect on motor neuron survival. Interestingly, this robust motor neuron survival was not accompanied by continued innervation of muscle end plates and thus resulted in no improvement in ipsilateral limb use.Conclusions/SignificanceThe potential to maintain dying motor neurons by delivering GDNF using neural progenitor cells represents a novel and powerful treatment strategy for ALS. While this approach represents a unique way to prevent motor neuron loss, our data also suggest that additional strategies may also be required for maintenance of neuromuscular connections and full functional recovery. However, simply maintaining motor neurons in patients would be the first step of a therapeutic advance for this devastating and incurable disease, while future strategies focus on the maintenance of the neuromuscular junction.
Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease in which there is a progressive loss of motor neurons and their connections to muscle leading to paralysis. To maintain muscle connections in a rat model of familial ALS, we performed intramuscular transplantation with human mesenchymal stem cells (hMSC) as “Trojan horses” to deliver growth factors to the terminals of motor neurons as well as the skeletal muscles. hMSC engineered to secrete glial cell line derived neurotrophic factor (hMSC-GDNF) were transplanted bilaterally into three muscle groups. The cells survived within the muscle, released GDNF, and significantly increased the number of neuromuscular connections and motor neuron cell bodies in the spinal cord at mid stages of the disease. Furthermore, intramuscular transplantation with hMSC-GDNF could ameliorate motor neuron loss within the spinal cord which connected to the limb muscles with transplants. While disease onset was similar in all animals, hMSC-GDNF significantly delayed disease progression, increasing overall lifespan by up to 28 days, which is one of the longest effects on survival noted for this rat model of familial ALS. This pre-clinical data provides a novel and practical approach towards ex vivo gene therapy for ALS.
Glial cell line-derived neurotrophic factor (GDNF) has been shown to increase the survival and functioning of dopamine neurons in a variety of animal models and some recent human trials. However, delivery of any protein to the brain remains a challenge due to the blood/brain barrier. Here we show that human neural progenitor cells (hNPC) can be genetically modified to release glycosylated GDNF in vitro under an inducible promoter system. hNPC-GDNF were transplanted into the striatum of rats 10 days following a partial lesion of the dopamine system. At 2 weeks following transplantation, the cells had migrated within the striatum and were releasing physiologically relevant levels of GDNF. This was sufficient to increase host dopamine neuron survival and fiber outgrowth. At 5 weeks following grafting there was a strong trend towards functional improvement in transplanted animals and at 8 weeks the cells had migrated to fill most of the striatum and continued to release GDNF with transport to the substantia nigra. These cells could also survive and release GDNF 3 months following transplantation into the aged monkey brain. No tumors were found in any animal. hNPC can be genetically modified, and thereby represent a safe and powerful option for delivering growth factors to specific targets within the central nervous system for diseases such as Parkinson's.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.