High‐quality Be‐doped InAs layer grown by molecular beam epitaxy on GaAs substrate has been examined via magnetotransport measurements and high‐resolution quantitative mobility spectrum analysis (HR‐QMSA) in the range of 5–300 K and up to 15 T magnetic field. The results show four‐channel conductivity and essential splitting of the most populated hole‐like channel below 55 K. It is concluded that origin of such effect results from the locally strain‐induced interlayer, which direct observation is difficult or impossible via alternative techniques. Based on the magnetotransport data analysis, the multilayer model is proposed, which is implemented into nextnano simulation, giving the proof of the argumentation correctness. These results indicate potential usefulness of HR‐QMSA technique even in the degeneration statistic regime.
Abstract. Poly(ethylene-co-vinyl acetate) (EVA) insulation of the cable applied in nuclear power plants was accelerated aged by gamma-rays at two various temperatures, namely 55 and 85°C. Radiation degradation in the dose range of 0-1500 kGy was monitored using a Differential Scanning Calorimetry method by measuring oxidative induction temperature (OITp), gel fraction, mechanical and electrical tests. It was confirmed that a dose rate effect in the range of 420-1500 Gy/h was negligible whereas progress of degradation with increasing dose was strongly temperature dependent. For the insulation accelerated aged at 85°C the OITp and permittivity measurements confirmed lower degradation than for the specimens radiation treated at 55°C at the same dose rates. It was postulated that an inverse thermal effect resulted from radiation induced cross-linking facilitated by melting of EVA crystallites at 85°C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.