Interior point methods for optimization have been around for more than 25 years now. Their presence has shaken up the field of optimization. Interior point methods for linear and (convex) quadratic programming display several features which make them particularly attractive for very large scale optimization. Among the most impressive of them are their lowdegree polynomial worst-case complexity and an unrivalled ability to deliver optimal solutions in an almost constant number of iterations which depends very little, if at all, on the problem dimension. Interior point methods are competitive when dealing with small problems of dimensions below one million constraints and variables and are beyond competition when applied to large problems of dimensions going into millions of constraints and variables.In this survey we will discuss several issues related to interior point methods including the proof of the worst-case complexity result, the reasons for their amazingly fast practical convergence and the features responsible for their ability to solve very large problems. The ever-growing sizes of optimization problems impose new requirements on optimization methods and software. In the final part of this paper we will therefore address a redesign of interior point methods to allow them to work in a matrix-free regime and to make them well-suited to solving even larger problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.