Abstract. Ongoing climate change is mainly evident as increased in average temperature. It is expected to have a significant impact on world's biomes, with forest ecosystems especially vulnerable to these changes. The effect of climate change on forests is both indirect, through its impact on various tree species of different ecological requirements, and direct, through its impact on all living components of the forest ecosystem. Among the latter, insects are the group of the greatest importance, including species detrimental to forest health. The impact of climate change on forest insects may be reflected in their distribution, phenology, activity, number of generations and, indirectly, through impact on their natural enemies. Predicting the future direction and pace of the climate change, as well as direct and indirect consequences of its effect on forest insects is difficult and often subject to considerable inaccuracy. The paper presents a review of data from the published literature in this area of study. The influence of the basic climate parameters, temperature and humidity, on forest herbivore insects is discussed, particularly in the context of the most probable scenarios of climate change, i.e. the gradual increase in the average temperature. Observed and projected impacts of climate change in relation to the influence of herbivorous insects on forest ecosystems are characterized. We present some of the possible adaptation strategies of forest management to the expected climate changes.
K. 2006. Effects of landscape composition and substrate availability on saproxylic beetles in boreal forests: a study using experimental logs for monitoring assemblages. Á/ Ecography 29: 191 Á/204.Intensive forestry practises in the Swedish landscape have led to the loss and fragmentation of stable old-growth habitats. We investigated relationships between landscape composition at multiple scales and the composition of saproxylic beetle assemblages in nine clear-cut, mature managed and old-growth spruce-dominated forest stands in the central boreal zone of Sweden. We set out fresh spruce and birch logs and created spruce snags in 2001 Á/2002 to experimentally test the effects of coarse woody debris (CWD) type and forest management on the composition of early and late successional, and red-listed saproxylic beetle assemblages. We examined effects of CWD availability at 100 m, and landscape composition at 1 and 10 km on saproxylic beetle abundances. Additionally, we tested whether assemblage similarity decreased with increasing distance between sites. We collected beetles from the experimental logs using eclector and window traps in four periods during 2003. CWD was measured and landscape composition data was obtained from maps of remotely sensed data. The composition of saproxylic beetles differed among different CWD substrates and between clear-cuts and the older stand types, however differences between mature managed and old-growth forests were significant only for red-listed species. Assemblage similarities for red-listed species on clear-cuts were more different at greater distances apart, indicating that they have more localised distributions. CWD availability within 100 m of the study sites was rarely important in determining the abundance of species, suggesting that early successional saproxylic beetles can disperse further than this distance. At a larger scale, a large area of suitable stand types within both 1 and 10 km resulted in greater abundances in the study sites for several common and habitatspecific species. The availability of suitable habitat at scales of 1 Á/10 km is thus likely to be important in the survival of many saproxylic species in forestry-fragmented areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.