The production of prompt D0, D+, and D*+ mesons was measured at midrapidity (|y| < 0.5) in Pb–Pb collisions at the centre-of-mass energy per nucleon–nucleon pair $$ \sqrt{s_{\mathrm{NN}}} $$
s
NN
= 5.02 TeV with the ALICE detector at the LHC. The D mesons were reconstructed via their hadronic decay channels and their production yields were measured in central (0–10%) and semicentral (30–50%) collisions. The measurement was performed up to a transverse momentum (pT) of 36 or 50 GeV/c depending on the D meson species and the centrality interval. For the first time in Pb–Pb collisions at the LHC, the yield of D0 mesons was measured down to pT = 0, which allowed a model-independent determination of the pT-integrated yield per unit of rapidity (dN/dy). A maximum suppression by a factor 5 and 2.5 was observed with the nuclear modification factor (RAA) of prompt D mesons at pT = 6–8 GeV/c for the 0–10% and 30–50% centrality classes, respectively. The D-meson RAA is compared with that of charged pions, charged hadrons, and J/ψ mesons as well as with theoretical predictions. The analysis of the agreement between the measured RAA, elliptic (v2) and triangular (v3) flow, and the model predictions allowed us to constrain the charm spatial diffusion coefficient Ds. Furthermore the comparison of RAA and v2 with different implementations of the same models provides an important insight into the role of radiative energy loss as well as charm quark recombination in the hadronisation mechanisms.
We carried out large-scale molecular-dynamics simulations of the classical Rayleigh-Taylor ͑RT͒ phenomenon in a Lennard-Jones molecular liquid. We have observed from these simulations, involving 10 6-10 7 particles, the development of hydrodynamic instabilities from two different kinds of interacting particles. A free surface is introduced by deploying an overlying void. For a box with a dimension up to about 1 m and two layers having different particle sizes, the fingering type of instability is observed as a result of oscillations caused by the gravitational field. In this gridless scheme, surface waves can be captured self-consistently. For equally sized particles, a spontaneous ''fluctuation driven'' mixing with a long start-up time is observed. These moleculardynamics results suggest the possibilities of upscaling the RT phenomenon. For conducting these numerical experiments, which require at least ϳ10 5 time steps, a single simulation would require 100-200 Tflops of massively parallel computer power.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.