We propose a new coding technology for 3D video represented by multiple views and the respective depth maps. The proposed technology is demonstrated as an extension of the recently developed high efficiency video coding (HEVC). One base views are compressed into a standard bitstream (like in HEVC). The remaining views and the depth maps are compressed using new coding tools that mostly rely on view synthesis. In the decoder, those views and the depth maps are derived via synthesis in the 3D space from the decoded baseview and from data corresponding to small disoccluded regions. The shapes and locations of those disoccluded regions can be derived by the decoder without any side information transmitted. To achieve high compression efficiency, we propose several new tools such as depth-based motion prediction, joint high frequency layer coding, consistent depth representation, and nonlinear depth representation. The experiments show high compression efficiency of the proposed technology. The bitrate needed for transmission of two side views with depth maps is mostly less than 50% than that of the bitrate for a single-view video.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.