In a regular drive system, with an internal combustion engine, vehicle braking is connected with the unproductive dissipation of ki-netic and potential energy accumulated in the mass of the vehicle into the environment. This energy can constitute up to 70% of the energy used to drive a vehicle under urban conditions. Its recovery and reuse is one of the basic advantages of hybrid and electric vehi-cles. Modern traffic management systems as well as navigation systems should take into account the possibility of the energy recovery in the process of regenerative braking. For this purpose, a model of a regenerative braking process may be helpful, which on the one hand will enable to provide information on how traffic conditions will affect the amount of energy dissipated (wasted) into the atmosphere, on the other hand will help to optimize the route of vehicles with regenerative braking systems. This work contains an analysis of the pro-cess of the regenerative braking for the urban traffic conditions registered in Gdańsk. A model was also presented that allows calculat-ing the amount of energy available from the braking process depending on the proposed variables characterizing the vehicle traffic conditions.
The main advantage of the use of the Bond Graphs method and State Equations for modeling energy systems with a complex structure (marine power plants, hybrid vehicles, etc.)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.