The aim of this study was to investigate and analyze the impact of selected parameters during the tribocharging process of shredded poly(ethylene terephthalate) (PET) and high-density polyethylene (PE-HD) plastics on accumulated electric charge and electrostatic separation effectiveness. The accumulation of electric charge on surfaces of polymer particles as a result of their circular motion forced by the airflow cyclone container was investigated. The impact of the container material, time of tribocharging and the airflow intensity were experimentally examined. A container in which the particles of the considered polymers are electrified with opposite charges was selected. A high ability to accumulate surface charge on small particles of both polymers was demonstrated. The electrified mixed PET/PE-HD was subjected to a separation process. An electrostatic separator designed and constructed by the authors was used for to the separation. In turn, to assess the effectiveness of this separation, a dedicated vision system was used. Based on the result of the carried out tests, it has been assumed that the proposed approach’s effectiveness has been demonstrated by means of empirical validation.
This paper presents a coupled field-circuit simulation of transients in a non-linear electromagnetic device supplied by electronic power converters (inverters, PWM systems). The eddy currents induced in solid cores are considered. The mathematical model of transients includes: equation of electromagnetic field, equations of the electric circuits and equation of motion. Numerical implementation of the algorithm is based on the finite element method. For time-stepping the Cranck-Nicholson scheme has been applied.
If you would like to write for this, or any other Emerald publication, then please use our Emerald for Authors service information about how to choose which publication to write for and submission guidelines are available for all. Please visit www.emeraldinsight.com/authors for more information. About Emerald www.emeraldinsight.comEmerald is a global publisher linking research and practice to the benefit of society. The company manages a portfolio of more than 290 journals and over 2,350 books and book series volumes, as well as providing an extensive range of online products and additional customer resources and services.Emerald is both COUNTER 4 and TRANSFER compliant. The organization is a partner of the Committee on Publication Ethics (COPE) and also works with Portico and the LOCKSS initiative for digital archive preservation. AbstractPurpose -The aim of the paper is to find the effective methods of power loss reduction in axisymmetric electromagnetic devices and improve their dynamic parameters. As an example the linear tubular motor is considered. Design/methodology/approach -The elaborated algorithm has been applied to analyze the dynamic operation of axisymmetric electromagnetic devices, especially tubular linear induction motors. The mathematical model of transients includes: the equation of electromagnetic field, the equations of electric circuits and the equation of motion. The model is based on the finite element method. For the time-stepping, the Cranck-Nicholson scheme is applied. In order to include non-linearity, the Newton-Raphson process is adopted. Findings -In order to reduce the influence of eddy currents, it is suggested that the solid core should be equipped with one or several radial slots. In such a case, the radial component of eddy currents occurs near the slot and disturbs the axial symmetry of the system. However, when the width of the slot is small, the fields generated by the radial component of eddy currents on both sides of the slot practically cancel one another and the system can still be considered axisymmetric. Another solution given in the paper consists of replacing the cylindrical core with a system of flat laminated segments. In such a case, saturation of the ferromagnetic parts is greater than in the case of classical axisymmetric core. Originality/value -In the paper, new quasi-2D axisymmetrical field-circuit methodology for electromagnetic device dynamics analysis has been elaborated. Proposed constructional solutions enable one to reduce the power losses in the primary core by half and total losses by 30 percent.
This paper presents and discusses the mathematical model of thermal phenomena occurring in axis-symmetric electromechanical linear motion converters. On the basis of the developed model, software to analyze the process of the heating up of this type of converters, was created. The effect of the thickness and type of material of the slot insulation, as well as the speed of the runner on the temperature distribution in the analyzed object was examined in-depth. Selected results of simulated calculations have been presented.
The aim of this study was to investigate and analyze the separation process of poly (ethylene terephthalate) and high-density polyethylene mixture. The research studied the influence of parameters of tribocharging and separation processes on the quality of separation. The research was carried out using a developed test stand consisting of a test tribocharger and a dedicated drum-type electrostatic separator. Both the separator and the tribocharger have been designed as automated test benches to assess the quality of plastic separation. In order to assess the quality of electrostatic separation of plastics, an original method based on the use of a dedicated vision system was used. The research was conducted in two stages. Firstly, the influence of the tribocharging process parameters on the efficiency of the process, i.e., the charge collected, was investigated. The next stage of the research was focused on the analysis of the influence of the separation process parameters on its effectiveness. The obtained results were presented and discussed. On the basis of the conducted research, the parameters of the tribocharging and separation processes affecting their effectiveness were determined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.