The data published by the European Container Glass Federation shows that the EU28 average collection rate for recycling of glass containers has grown to a rate of 76%. However the stabilizer produced at mechanical-biological treatment (MBT) installations at landfills still contains large amounts of recyclable glass. An industrial-scale study has been undertaken in order to assess the possibility of recovering this glass from the stabilizer. A new pilot installation was built at the MBT plant in Marszów, Poland. Tests were conducted on stabilizer samples produced at the plant (13 samples) and others collected from several MBT plants based in Poland (six samples). Processing the stabilizer on the designed line made it possible to recover on average 68.4 ± 7.0% of the glass contained in it from Marszów samples and 58.4 ± 14.2% in the case of samples acquired from other MBT installations. It is demonstrated that the concentrate quality largely depends on the stabilizer’s moisture content. A concentrate with glass content from 98.0% to 99.5% was obtained for samples of low-moisture stabilizers (for 14 out of 19 samples). The product was accepted by glass recycling plants due to its low level of contamination with other materials and its appropriate particle size.
At most of the installations for the mechanical and biological treatment of waste operated in Poland, the 0–80 mm fraction, separated from the municipal waste stream, are completely stored after biostabilization. Such an action does not fit into the EU strategy focused on circular waste management. The purpose of this study was to assess the technical feasibility of recovering the mineral fractions contained in the compost-like-output (CLO) on a technological line designed for glass recovery. The research started in January 2019, lasted for the next 12 months, and covered 29 measurement series. The following two high-energy fractions were separated from the CLO: 10–35 mm light fraction after separation in the air separator (M-1) and 35–80 mm light fraction after separation in the air separator (M-2). The stabilization processing on the glass recovery line allowed for the recovery of two high energy fractions in the total amount of 24.5% of the processed, and it stabilized the product’s mass. In terms of materials, the M-1 and M-2 wastes were a mixture of organic, paper, and plastic materials. Under the Refuse Derived Fuel (RDF) classification, according to the European Committee for Standardization, the tested waste fell within the following classes: waste M-1: 4NCV2Cl4Hg and M-2: 4NCV1Cl4Hg.
The article presents the results of research aimed at analysing the share of fractions suitable for recycling and pollutants in waste collected in a yellow bag. The research was carried out in an area inhabited by 200,000 people. The amount of waste collected in the communes in yellow containers in 2016–2019 increased systematically in communes: rural by 75.8, urban–rural by 44.9 and urban by 17.8%. The collection efficiency expressed in the degree of collection was the highest and grew fastest in rural areas (from 25.1 to 35.5%). In cities, it practically did not change (14.4–15.8%). The weight of recyclable components represented on average 39.9% of the weight of yellow bag waste. Plastic bottles (PET) packaging prevailed, the share of which changed from 19.6 to 14.8%, including the share of colourless PET decreasing from 7.9 to 5.8%. At present, revenue from the sale of secondary raw materials obtained from waste collected separately to yellow bags covers only 26% of the costs related to the recycling and recovery of waste delivered to the installation. Support for separate collection of plastics through recovery organisations, i.e., entrepreneurs who are obliged to recover and recycle waste, is symbolic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.