The aim of the study was to investigate the effect of Bacillus licheniformis and salinomycin supplementation in broiler diets as individual factors or in combination on the growth performance, GIT morphometry, and microbiota populations. Four hundred one-day-old Ross 308 chicks were randomly distributed to four dietary treatments (10 replicates, 10 birds each). The following treatments were applied: NC—no additives; NC + SAL—salinomycin addition (60 mg/kg diet), NC + PRO—B. licheniformis DSM 28710 preparation (1.6 × 109 CFU/kg; 500 mg/kg diet), and NC + SAL + PRO—combination of salinomycin and B. licheniformis. Probiotic administration resulted in improvement (p < 0.05) of the performance parameters, including body weight gain (1–10 d, and 11–22 d) and feed conversion ratio (11–22 d, 1–36 d). An interaction (p < 0.05) between experimental factors was observed in terms of lower pH values in the crop (tendency, p = 0.053) and ceca. Both factors lowered the alpha diversity and Enterobacteriaceae and promoted Bacillaceae communities in the jejunum (p < 0.05). Interactions were also observed in terms of reducing Clostridiaceae in the ceca. In conclusion, the combined use of B. licheniformis and salinomycin in broilers’ diets had beneficial effects.
This study aims to evaluate the effects of Bacillus licheniformis and 6-phytase added alone or in combination to broiler chicken diets on the growth performance, apparent ileal digestibility coefficient (AID) of nutrients, microbial activity, and cecal bacterial communities. In total, 400 one-day-old female Ross 308 chicks were randomly allocated to 4 dietary treatments (10 replicate pens, 10 birds each). The following groups were defined: NC (negative control), basal diet without any feed additive supplementation; NC+Pro, basal diet with addition of the B. licheniformis preparation (500 g/t of diet); NC+Phy, basal diet with addition of phytase (200 g/t of diet); and NC+Pro+Phy, basal diet combined with both studied additives. B. licheniformis positively affected (P<0.05) the feed intake (FI) and feed conversion ratio (FCR) in the first 10 d of bird rearing. Moreover, phytase supplementation elevated the FCR from 21 to 35 d. In the entire experiment, an interaction between phytase and probiotic was observed only in terms of decreasing the bird FI (P=0.005) without a negative effect on the FCR (P>0.05). Furthermore, the AID of ether extract was improved by phytase supplementation. In terms of the cecal microecology, both separately administered factors promoted Lactobacillaceae in the ceca. Interactions between probiotic preparation and phytase were noted that indicated a decreased Clostridiales population and favored Ruminococcaceae proliferation. It can be concluded that for the first time in the available literature, the favorable interactions between B. licheniformis and phytase resulted in improved performance and cecal microbiota changes in broilers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.