Common molecular changes in cancer cells are high carbon flux through the glycolytic pathway and overexpression of fatty acid synthase, a key lipogenic enzyme. Since glycerol 3-phosphate dehydrogenase creates a link between carbohydrates and the lipid metabolism, we have investigated the activity of glycerol 3-phosphate dehydrogenase and various lipogenic enzymes in human bladder cancer. The data presented in this paper indicate that glycerol 3-phosphate dehydrogenase activity in human bladder cancer is significantly higher compared to adjacent non-neoplastic tissue, serving as normal control bladder tissue. Increased glycerol 3-phosphate dehydrogenase activity is accompanied by increased enzyme activity, either directly (fatty acid synthase) or indirectly (through ATP-citrate lyase, glucose 6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase and citrate synthase) involved in fatty acid synthesis. Coordinated upregulation of glycerol 3-phosphate dehydrogenase and lipogenic enzymes activities in human bladder cancer suggests that glycerol 3-phosphate dehydrogenase supplies glycerol 3-phosphate for lipid biosynthesis.
The importance of coenzyme A (CoA) as a carrier of acyl residues in cell metabolism is well understood. Coenzyme A participates in more than 100 different catabolic and anabolic reactions, including those involved in the metabolism of lipids, carbohydrates, proteins, ethanol, bile acids, and xenobiotics. However, much less is known about the importance of the concentration of this cofactor in various cell compartments and the role of altered CoA concentration in various pathologies. Despite continuous research on these issues, the molecular mechanisms in the regulation of the intracellular level of CoA under pathological conditions are still not well understood. This review summarizes the current knowledge of (a) CoA subcellular concentrations; (b) the roles of CoA synthesis and degradation processes; and (c) protein modification by reversible CoA binding to proteins (CoAlation). Particular attention is paid to (a) the roles of changes in the level of CoA under pathological conditions, such as in neurodegenerative diseases, cancer, myopathies, and infectious diseases; and (b) the beneficial effect of CoA and pantethine (which like CoA is finally converted to Pan and cysteamine), used at pharmacological doses for the treatment of hyperlipidemia.
It is likely that enhanced citrate synthase activity contributes to the conversion of glucose to lipids in pancreatic cancer providing substrate for membrane lipids synthesis.
Successful treatment of obesity and related diseases by chronic food restriction requires the understanding of the effect of such nutritional therapy on the expression of genes which have been implicated to be involved in some diseases associated with obesity. The purpose of this study was to examine the effect of chronic food restriction and chronic food restriction/refeeding on lipogenic enzymes, especially the expression of genes encoding the stearoyl-CoA desaturase 1 (Scd1) and elongase6 (Elovl6) in rat liver and adipose tissue. We found that both chronic food restriction and chronic food restriction/refeeding caused increased expression of the Scd1 and Elovl6 genes in both the liver and adipose tissue. The increase was more pronounced in case of chronic food restriction/refeeding (several-fold increase) than that in chronic food restriction alone (two to threefold increase). Essentially, similar results were obtained when the expression of fatty acid synthase, acetyl-CoA carboxylase, ATP-citrate lyase, and malic enzyme genes was studied. Moreover, we found that chronic food restriction and short-term fasting exert opposite effects on the expression of lipogenic enzymes genes. The increased expression of the genes encoding Scd1, Elovl6, and other key lipogenic enzymes may favor fat storage after chronic food restriction/refeeding and may be part of the molecular mechanism by which food restriction/refeeding increases body weight and enhances susceptibility to insulin resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.