Abstract. We show that stochastic processes with linear conditional expectations and quadratic conditional variances are Markov, and their transition probabilities are related to a three-parameter family of orthogonal polynomials which generalize the Meixner polynomials. Special cases of these processes are known to arise from the non-commutative generalizations of the Lévy processes.
Abstract. We introduce the quadratic harness condition and show that integrable quadratic harnesses have orthogonal martingale polynomials with a three step recurrence that satisfies a q-commutation relation. This implies that quadratic harnesses are essentially determined uniquely by five numerical constants. Explicit recurrences for the orthogonal martingale polynomials are derived in several cases of interest.
Abstract. The Lukacs theorem is one of the most brilliant results in the area of characterizations of probability distributions. First, because it gives a deep insight into the nature of independence properties of the gamma distribution; second, because it uses beautiful and non-trivial mathematics. Originally it was proved for probability distributions concentrated on (0, ∞). In 1962 Olkin and Rubin extended it to matrix variate distributions. Since that time it has been believed that the fundamental reason such an extension is possible, is the assumed property of invariance of the distribution of the "quotient" (properly defined for matrices). The main result of this paper is that the matrix variate Lukacs theorem holds without any invariance assumption for the "quotient". The argument is based on solutions of some functional equations in matrix variate real functions, which seem to be of independent interest. The proofs use techniques of differential calculus in the cone of positive definite symmetric matrices.
The product of subsequent partial sums of independent, identically distributed, square integrable, positive random variables is asymptotically lognormal. The result extends in a rather routine way to non-degenerate U -statistics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.