UV irradiation of an in vitro translation mixture induced cross-linking of 4-thioU-substituted tmRNA to Escherichia coli ribosomes by forming covalent complexes with ribosomal protein S1 and 16S rRNA. In the absence of S1, tmRNA was unable to bind and label ribosomal components. Mobility assays on native gels demonstrated that protein S1 bound to tmRNA with an apparent binding constant of 1 3 10 8 M ±1 . A mutant tmRNA, lacking the tag coding region and pseudoknots pk2, pk3 and pk4, did not compete with full-length tmRNA, indicating that this region is required for S1 binding. This was con®rmed by identi®cation of eight cross-linked nucleotides: U85, located before the resume codon of tmRNA; U105, in the mRNA portion of tmRNA; U172 in pK2; U198, U212, U230 and U240 in pk3; and U246, in the junction between pk3 and pk4. We concluded that ribosomal protein S1, in concert with the previously identi®ed elongation factor EF-Tu and protein SmpB, plays an important role in tmRNA-mediated trans-translation by facilitating the binding of tmRNA to ribosomes and forming complexes with free tmRNA.
RNAcentral is a database of non-coding RNA (ncRNA) sequences that aggregates data from
specialised ncRNA resources and provides a single entry point for accessing ncRNA
sequences of all ncRNA types from all organisms. Since its launch in 2014, RNAcentral has
integrated twelve new resources, taking the total number of collaborating database to 22,
and began importing new types of data, such as modified nucleotides from MODOMICS and PDB.
We created new species-specific identifiers that refer to unique RNA sequences within a
context of single species. The website has been subject to continuous improvements
focusing on text and sequence similarity searches as well as genome browsing
functionality. All RNAcentral data is provided for free and is available for browsing,
bulk downloads, and programmatic access at http://rnacentral.org/.
SARS-CoV-2 Nsp15 is a uridine-specific endoribonuclease with C-terminal catalytic domain belonging to the EndoU family that is highly conserved in coronaviruses. As endoribonuclease activity seems to be responsible for the interference with the innate immune response, Nsp15 emerges as an attractive target for therapeutic intervention. Here we report the first structures with bound nucleotides and show how the enzyme specifically recognizes uridine moiety. In addition to a uridine site we present evidence for a second base binding site that can accommodate any base. The structure with a transition state analog, uridine vanadate, confirms interactions key to catalytic mechanisms. In the presence of manganese ions, the enzyme cleaves unpaired RNAs. This acquired knowledge was instrumental in identifying Tipiracil, an FDA approved drug that is used in the treatment of colorectal cancer, as a potential anti-COVID-19 drug. Using crystallography, biochemical, and whole-cell assays, we demonstrate that Tipiracil inhibits SARS-CoV-2 Nsp15 by interacting with the uridine binding pocket in the enzyme’s active site. Our findings provide new insights for the development of uracil scaffold-based drugs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.