Abundant corneocyte surface protrusions, observed in patients with atopic dermatitis with filaggrin loss-offunction mutations, are inversely associated with levels of natural moisturizing factors (NMFs) in the stratum corneum. To dissect the etiological role of NMFs and filaggrin deficiency in surface texture alterations, we examined mouse models with genetic deficiencies in the synthesis or degradation of filaggrin monomers for NMFs, cell stiffness (elastic modulus) and corneocyte surface protrusion density (dermal texture index). Five neonatal and adult mouse models carrying inactivating mutations of SASPase (Sasp À/À), filaggrin (Flg ft/ft and Flg À/À), filaggrin-hornerin (FlgHrnr À/À), and bleomycin hydrolase (Blmh À/À) were investigated. Sasp À/À and Flg À/À were on the hairless mouse background. Atomic force microscopy was used to determine elastic modulus and dermal texture index. Corneocytes of each neonatal as well as hairless adult knockout mouse exhibited an increased number of protrusions and decreased elastic modulus. In these mice, NMFs were reduced except for Sasp À/À. Dermal texture index was inversely correlated with NMFs and elastic modulus. Our findings demonstrate that any filaggrin-NMF axis deficiency can affect corneocyte mechanical properties in mice and likely in humans. Differences in NMFs and corneocyte surface texture between neonatal and adult as well as hairless and hairy mice emphasize the need for carefully selecting the most appropriate animal models for studies.
The liver is the major contributor to homocysteine (Hcy) metabolism and fatty liver disease is associated with hyperhomocysteinemia. Bleomycin hydrolase (Blmh) is an aminohydrolase that also participates in Hcy metabolism by hydrolyzing Hcy-thiolactone. To gain insight into hepatic functions of Blmh, we analyzed the liver proteome of Blmh(-/-) and Blmh(+/+) mice in the absence and presence of diet-induced (high methionine) hyperhomocysteinemia using 2D IEF/SDS-PAGE gel electrophoresis and MALDI-TOF mass spectrometry. We identified eleven liver proteins whose expression was significantly altered as a result of the Blmh gene inactivation. The differential expression (Blmh(-/-) vs. Blmh(+/+)) of four liver proteins was lower, of two proteins was higher, and was further modified in mice fed with a hyperhomocysteinemic high-Met diet. The down-regulated proteins are involved in lipoprotein metabolism (ApoA1, ApoE), antigen processing (Psme1), energy metabolism (Atp5h, Gamt), methylglyoxal detoxification (Glo1), oxidative stress response (Sod1), and inactivation of catecholamine neurotransmitters (Comt). The two up-regulated proteins are involved in nitric oxide generation (Ddah1) and xenobiotic detoxification (Sult1c1). We also found that livers of Blmh(-/-) mice expressed a novel variant of glyoxalase domain-containing protein 4 (Glod4) by a post-transcriptional mechanism. Our findings suggest that Blmh interacts with diverse cellular processes-from lipoprotein metabolism, nitric oxide regulation, antigen processing, and energy metabolism to detoxification and antioxidant defenses-that are essential for liver homeostasis and that modulation of these interactions by hyperhomocysteinemia underlies the involvement of Hcy in fatty liver disease.
Genetic or nutritional deficiencies in homocysteine (Hcy) metabolism increase Hcy-thiolactone, which causes protein damage by forming isopetide bonds with lysine residues, generating N-Hcy-protein. In the present work, we studied the prevalence and genetic determinants of keratin damage caused by homocysteinylation. We found that in mammals and birds, 35 to 98% of Hcy was bound to hair keratin via amide or isopeptide bond (Hcy-keratin), while 2 to 65% was S-Hcy-keratin. A major fraction of hair Hcy-keratin (56% to 93%), significantly higher in birds than in mammals, was sodium dodecyl sulfate-insoluble. Genetic hyperhomocysteinemia significantly increased N-Hcy-keratin levels in the mouse pelage. N-Hcy-keratin was elevated 3.5-, 6.3-, and 11.7-fold in hair from Mthfr−/−, Cse−/−, or Cbs−/− mice, respectively. The accumulation of N-Hcy in hair keratin led to a progressive reduction of N-Hcy-keratin solubility in sodium dodecyl sulfate, from 0.39 ± 0.04 in wild-type mice to 0.19 ± 0.03, 0.14 ± 0.01, and 0.07 ± 0.03 in Mthfr−/−, Cse−/−, or Cbs−/−animals, respectively. N-Hcy-keratin accelerated aggregation of unmodified keratin in Cbs−/− mouse hair. Keratin methionine, copper, and iron levels in mouse hair were not affected by hyperhomocysteinemia. These findings provide evidence that pelage keratin is N-homocysteinylated in vivo in mammals and birds, and that this process causes keratin damage, manifested by a reduced solubility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.