MiRNAs are regulatory molecules that can be packaged into exosomes and secreted from cells. Here, we show that adipose tissue macrophages (ATMs) in obese mice secrete miRNA-containing exosomes (Exos), which cause glucose intolerance and insulin resistance when administered to lean mice. Conversely, ATM Exos obtained from lean mice improve glucose tolerance and insulin sensitivity when administered to obese recipients. miR-155 is one of the miRNAs overexpressed in obese ATM Exos, and earlier studies have shown that PPARγ is a miR-155 target. Our results show that miR-155KO animals are insulin sensitive and glucose tolerant compared to controls. Furthermore, transplantation of WT bone marrow into miR-155KO mice mitigated this phenotype. Taken together, these studies show that ATMs secrete exosomes containing miRNA cargo. These miRNAs can be transferred to insulin target cell types through mechanisms of paracrine or endocrine regulation with robust effects on cellular insulin action, in vivo insulin sensitivity, and overall glucose homeostasis.
Chronic inflammation is a key component of obesity–induced insulin resistance and plays a central role in metabolic disease. In this study, we found that the major insulin target tissues, liver, muscle and adipose tissue exhibit increased levels of the chemotactic eicosanoid LTB4 in obese high fat diet (HFD) mice compared to lean chow fed mice. Inhibition of the LTB4 receptor, Ltb4r1, through either genetic or pharmacologic loss of function results in an anti–inflammatory phenotype with protection from systemic insulin resistance and hepatic steatosis in the setting of both HFD–induced and genetic obesity. Importantly, in vitro treatment with LTB4 directly enhanced macrophage chemotaxis, stimulated inflammatory pathways in macrophages, promoted de novo hepatic lipogenesis, decreased insulin stimulated glucose uptake in L6 myocytes, increased gluconeogenesis, and impaired insulin–mediated suppression of hepatic glucose output (HGO) in primary mouse hepatocytes. This was accompanied by decreased insulin stimulated Akt phosphorylation and increased Irs1 and Irs2 serine phosphorylation and all of these events were Gαi and Jnk dependent. Taken together, these observations elucidate a novel role of LTB4/Ltb4r1 in the etiology of insulin resistance in hepatocytes and myocytes, and shows that in vivo inhibition of Ltb4r1 leads to robust insulin sensitizing effects.
Summary
Insulin resistance, tissue inflammation and adipose tissue dysfunction are features of obesity/Type 2 diabetes. Accordingly, we generated adipocyte-specific Nuclear Receptor Corepressor (NCoR) knock-out (AKO) mice to investigate the function of NCoR in adipocyte biology and glucose/insulin homeostasis. Despite increased obesity, glucose tolerance was improved in AKO mice, and euglycemic clamp studies demonstrated enhanced insulin sensitivity in liver, muscle and fat. Adipose tissue macrophage infiltration and inflammation were also decreased. PPARγ response genes were upregulated in adipose tissue from AKO mice and CDK5-mediated PPARγ ser-273 phosphorylation was reduced, creating a constitutively active PPARγ state. This identifies a novel function of NCoR as an adaptor protein which enhances the ability of CDK5 to associate with and phosphorylate PPARγ. The dominant function of adipocyte NCoR is to transrepress PPARγ and promote PPARγ ser-273 phosphorylation, such that NCoR deletion leads to adipogenesis, reduced inflammation, and enhanced systemic insulin sensitivity, phenocopying the TZD treated state.
Increased accumulation of fatty acids and their derivatives can impair insulin-stimulated glucose disposal by skeletal muscle. To characterize the nature of the defects in lipid metabolism and to evaluate the effects of thiazolidinedione treatment, we analyzed the levels of triacylglycerol, longchain fatty acyl-coA, malonyl-CoA, fatty acid oxidation, AMP-activated protein kinase (AMPK), acetyl-CoA carboxylase (ACC), malonyl-CoA decarboxylase, and fatty acid transport proteins in muscle biopsies from nondiabetic lean, obese, and type 2 subjects before and after an euglycemic-hyperinsulinemic clamp as well as pre-and post-3-month rosiglitazone treatment. We observed that low AMPK and high ACC activities resulted in elevation of malonyl-CoA levels and lower fatty acid oxidation rates. These conditions, along with the basal higher expression levels of fatty acid transporters, led accumulation of longchain fatty acyl-coA and triacylglycerol in insulin-resistant muscle. During the insulin infusion, muscle fatty acid oxidation was reduced to a greater extent in the lean compared with the insulin-resistant subjects. In contrast, isolated muscle mitochondria from the type 2 subjects exhibited a greater rate of fatty acid oxidation compared with the lean group. All of these abnormalities in the type 2 diabetic group were reversed by rosiglitazone treatment. In conclusion, these studies have shown that elevated malonyl-CoA levels and decreased fatty acid oxidation are key abnormalities in insulin-resistant muscle, and, in type 2 diabetic patients, thiazolidinedione treatment can reverse these abnormalities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.