Background A Task Force from the International Society of Pharmacoeconomics and Outcomes Research (ISPOR) provides recommendations on how to systematically identify and appraise health state utility (HSU) weights for cost-effectiveness analyses. We applied these recommendations to conduct a systematic review (SR) to identify HSU weights for different stages of chronic kidney disease (CKD), renal replacement therapy (RRT) and complications. Methods MEDLINE® and Embase were searched for interventional and non-interventional studies reporting HSU weights for patients with CKD stages 1–5 or RRT. As per ISPOR Task Force Guidance, study quality criteria, applicability for Health Technology Assessment (HTA) and generalisability to a broad CKD population were used to grade studies as either 1 (recommended), 2 (to be considered if there are no data from grade 1 studies) or 3 (not recommended). Results A total of 17 grade 1 studies were included in this SR with 51 to 1767 participants, conducted in the UK, USA, Canada, China, Spain, and multiple-countries. Health related quality of life (HRQL) instruments used in the studies included were EQ-5D-3L (10 studies), SF-6D (4 studies), HUI2/HUI3 (1 study), and combinations (2 studies). Although absolute values for HSU weights varied among instruments, HSU weights decreased with CKD severity in a consistent manner across all instruments. Conclusions This SR identified HSU weights for a range of CKD states and showed that HRQL decreases with CKD progression. Data were available to inform cost-effectiveness analysis in CKD in a number of geographies using instruments acceptable by HTA agencies.
Current treatments for Parkinson’s disease (PD) only alleviate symptoms doing little to inhibit the onset and progression of the disease, thus we must research the mechanism of Parkinson’s. Rotenone is a known inducer of parkinsonian conditions in rats; we use rotenone to induce parkinsonian cellular conditions in Dictyostelium discoideum. In our model we primarily focus on mitochondrial dynamics. We found that rotenone disrupts the actin and microtubule cytoskeleton but mitochondrial morphology remains intact. Rotenone stimulates mitochondrial velocity while inhibiting mitochondrial fusion, increases reactive oxygen species (ROS) but has no effect on ATP levels. Antioxidants have been shown to decrease some PD symptoms thus we added ascorbic acid to our rotenone treated cells. Ascorbic acid administration suggests that rotenone effects may be specific to the disruption of the cytoskeleton rather than the increase in ROS. Our results imply that D. discoideum may be a valid cellular PD model and that the rotenone induced velocity increase and loss of fusion could prevent mitochondria from effectively providing energy and other mitochondrial products in high demand areas. The combination of these defects in mitochondrial dynamics and increased ROS could result in degeneration of neurons in PD.
Aims: The purpose of this study is to assess the economic cost differences and the associated treatment resource changes between the developing coronary artery disease (CAD) diagnostic tool fast strain-encoded cardiac imaging (Fast-SENC) and the current commonly used stress test single-photon emission computed tomography (SPECT). Materials and methods: A "payer perspective" model was created first, consisting of long-term and short-term components that used a hypothetical cohort of patients of average age (60.8 years) presenting with chest pain and suspected CAD to assess cost-impact. A cost impact model was then built that assessed likely savings from a "hospital perspective" from substituting Fast-SENC for a portion of SPECTs assuming an average number of annual SPECT tests performed in US hospitals. Results: In the payer model, using Fast-SENC followed by coronary angiography (CA) and percutaneous coronary intervention (PCI) treatment when necessary is less costly than the SPECT method when considering both direct and indirect costs of testing. Expected costs of the Fast-SENC were between $2,510 and $2,632 per correct diagnosis, while expected costs for the SPECT were between $3,157 and $4,078. Fast-SENC reduced false positives by 50% and false negatives by 86%, generating additional cost savings. The hospital model showed total costs per CAD patient visit of $825 for SPECT and $376 for Fast-SENC. Limitations: Limitations of this study are that clinical data are sourced from other published clinical trials on how CAD diagnostic strategies impact clinical outcome, and that necessary assumptions were made which impact health outcomes. Conclusion: The lower cost, higher sensitivity and specificity rates, and faster, less burdensome process for detecting CAD patients make Fast-SENC a more capable and economically beneficial stress test than SPECT. The payer model and hospital model demonstrate an alignment between payer and provider economics as Fast-SENC provides monetary savings for patients and resource benefits for hospitals. ARTICLE HISTORY
Background Advances such as passive monitoring technology (PMT), which provides holistic supervision of chronically ill and elderly patients, enable and support improved monitoring and observation, thus empowering the growing population of older adults to live more independently while lowering health care expenses. Aims This study develops a conceptual model to estimate the potential savings associated with PMT. Methods We first develop a conceptual model to identify the main cost variables associated with independent living, focusing on three pathways: (1) PMT, (2) independent living supported by the current standard of care, and (3) facility-based care. We examined the impact on three outcomes [i.e., health care costs, institutional costs, and health-related quality of life (HRQoL)] along each of the three care pathways (i.e., PMT, independent living supported by the standard of care, and facility-based care) and developed a cost-benefit model to calculate the net costs and benefits associated with each care pathway. Results The cost–benefit model showed savings between approximately $425 per-member per-month (PMPM) for those using PMT compared to those on the standard of care pathway. Sensitivity analysis demonstrated that a 5% increase in nursing home utilization generates cost savings of more than 30% PMPM. Discussion The total projected cost savings for individuals on the PMT arm are projected to be more than $425 PMPM, with annual savings of $5069 per-person per-year, and over $5.1 million for a target population of 1000 individuals. Conclusions The cost calculations in our cost–benefit simulation model clearly demonstrate the value of PMT and show the potential value to payers and integrated delivery systems in offering PMT to individuals who are likely to benefit the most from the services.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.