Adults struggle to learn non-native speech contrasts even after years of exposure. While laboratory-based training approaches yield learning, the optimal training conditions for maximizing speech learning in adulthood are currently unknown. Vagus nerve stimulation has been shown to prime adult sensory-perceptual systems towards plasticity in animal models. Precise temporal pairing with auditory stimuli can enhance auditory cortical representations with a high degree of specificity. Here, we examined whether sub-perceptual threshold transcutaneous vagus nerve stimulation (tVNS), paired with non-native speech sounds, enhances speech category learning in adults. Twenty-four native English-speakers were trained to identify non-native Mandarin tone categories. Across two groups, tVNS was paired with the tone categories that were easier-or harder-to-learn. A control group received no stimulation but followed an identical thresholding procedure as the intervention groups. We found that tVNS robustly enhanced speech category learning and retention of correct stimulus-response associations, but only when stimulation was paired with the easier-to-learn categories. This effect emerged rapidly, generalized to new exemplars, and was qualitatively different from the normal individual variability observed in hundreds of learners who have performed in the same task without stimulation. Electroencephalography recorded before and after training indicated no evidence of tVNS-induced changes in the sensory representation of auditory stimuli. These results suggest that paired-tVNS induces a temporally precise neuromodulatory signal that selectively enhances the perception and memory consolidation of perceptually salient categories.
Objectives:
Understanding speech in adverse listening environments is challenging for older adults. Individual differences in pure tone averages and working memory are known to be critical indicators of speech in noise comprehension. Recent studies have suggested that tracking of the speech envelope in cortical oscillations <8 Hz may be an important mechanism related to speech comprehension by segmenting speech into words and phrases (delta, 1 to 4 Hz) or phonemes and syllables (theta, 4 to 8 Hz). The purpose of this study was to investigate the extent to which individual differences in pure tone averages, working memory, and cortical tracking of the speech envelope relate to speech in noise comprehension in older adults.
Design:
Cortical tracking of continuous speech was assessed using electroencephalography in older adults (60 to 80 years). Participants listened to speech in quiet and in the presence of noise (time-reversed speech) and answered comprehension questions. Participants completed Forward Digit Span and Backward Digit Span as measures of working memory, and pure tone averages were collected. An index of reduction in noise (RIN) was calculated by normalizing the difference between raw cortical tracking in quiet and in noise.
Results:
Comprehension question performance was greater for speech in quiet than for speech in noise. The relationship between RIN and speech in noise comprehension was assessed while controlling for the effects of individual differences in pure tone averages and working memory. Delta band RIN correlated with speech in noise comprehension, while theta band RIN did not.
Conclusions:
Cortical tracking by delta oscillations is robust to the effects of noise. These findings demonstrate that the magnitude of delta band RIN relates to individual differences in speech in noise comprehension in older adults. Delta band RIN may serve as a neural metric of speech in noise comprehension beyond the effects of pure tone averages and working memory.
Across two experiments, we examine the relationship between individual differences in working memory (WM) and the acquisition of non-native speech categories in adulthood. While WM is associated with individual differences in a variety of learning tasks, successful acquisition of speech categories is argued to be contingent on WM-independent procedural-learning mechanisms. Thus, the role of WM in speech category learning is unclear. In Experiment 1, we show that individuals with higher WM acquire non-native speech categories faster and to a greater extent than those with lower WM. In Experiment 2, we replicate these results and show that individuals with higher WM use more optimal, procedural-based learning strategies and demonstrate more distinct speech-evoked pupillary responses for correct relative to incorrect trials. We propose that higher WM may allow for greater stimulus-related attention, resulting in more robust representations and optimal learning strategies. We discuss implications for neurobiological models of speech category learning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.