Vascular disease is a leading cause of death globally and typically manifests chronically due to long-term maladaptive arterial growth and remodeling. To date, there is no in vitro technique for studying vascular function over relevant disease time courses that both mimics in vivo-like tissue structure and provides a simple readout of tissue stress. We aimed to extend tissue viability in our muscular thin film contractility assay by modifying the polydimethylsiloxane (PDMS) substrate with micropatterned genipin, allowing extracellular matrix turnover without cell loss. To achieve this, we developed a microfluidic delivery system to pattern genipin and extracellular matrix proteins on PDMS prior to cell seeding. Tissues constructed using this method showed improved viability and maintenance of in vivo-like lamellar structure. Functional contractility of tissues fabricated on genipin-modified substrates remained consistent throughout two weeks in culture. These results suggest that muscular thin films with genipin-modified PDMS substrates are a viable method for conducting functional studies of arterial growth and remodeling in vascular diseases.
The chronic nature of vascular disease progression requires the development of experimental techniques that simulate physiologic and pathologic vascular behaviors on disease-relevant time scales. Previously, microcontact printing has been used to fabricate two-dimensional functional arterial mimics through patterning of extracellular matrix protein as guidance cues for tissue organization. Vascular muscular thin films utilized these mimics to assess functional contractility. However, the microcontact printing fabrication technique used typically incorporates hydrophobic PDMS substrates. As the tissue turns over the underlying extracellular matrix, new proteins must undergo a conformational change or denaturing in order to expose hydrophobic amino acid residues to the hydrophobic PDMS surfaces for attachment, resulting in altered matrix protein bioactivity, delamination, and death of the tissues.Here, we present a microfluidic deposition technique for patterning of the crosslinker compound genipin. Genipin serves as an intermediary between patterned tissues and PDMS substrates, allowing cells to deposit newly-synthesized extracellular matrix protein onto a more hydrophilic surface and remain attached to the PDMS substrates. We also show that extracellular matrix proteins can be patterned directly onto deposited genipin, allowing dictation of engineered tissue structure. Tissues fabricated with this technique show high fidelity in both structural alignment and contractile function of vascular smooth muscle tissue in a vascular muscular thin film model. This technique can be extended using other cell types and provides the framework for future study of chronic tissue-and organ-level functionality. Video LinkThe video component of this article can be found at
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.