Objectives The pathophysiology of chronic wounds typically involves redox imbalance and inflammation pathway dysregulation, often with concomitant microbial infection. Endogenous antioxidants such as glutathione and tocopherols are notably reduced or absent, indicative of significant oxidative imbalance. However, emerging evidence suggests that polyphenols could be effective agents for the amelioration of this condition. This review aims to summarise the current state of knowledge surrounding redox imbalance in the chronic wound environment and the potential use of polyphenols for the treatment of chronic wounds. Key findings Polyphenols provide a multi-faceted approach towards the treatment of chronic wounds. Firstly, their antioxidant activity allows direct neutralisation of harmful free radicals and reactive oxygen species, assisting in restoring redox balance. Upregulation of pro-healing and anti-inflammatory gene pathways and enzymes by specific polyphenols further acts to reduce redox imbalance and promote wound healing actions, such as proliferation, extracellular matrix deposition and tissue remodelling. Finally, many polyphenols possess antimicrobial activity, which can be beneficial for preventing or resolving infection of the wound site. Summary Exploration of this diverse group of natural compounds may yield effective and economical options for the prevention or treatment of chronic wounds.
Charchar, Fadi, and Golledge, Jonathan (2020) An improved 3-(4,5dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2Htetrazolium proliferation assay to overcome the interference of hydralazine. Assay and Drug Development Technologies, 18 (8) pp. 379-384.
The 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay is one of the most commonly used tests of cell proliferation. Hydralazine has been reported to interfere with the performance of the MTS assay when used on adherent cells. This study aimed to investigate whether hydralazine interferes with the performance of the MTS assay on suspended cells. THP-1 (a monocytic leukemia cell line) cells were cultured in the presence or absence of hydralazine (0, 10, 50, 100, and 500 lM) for 2 or 24 h. Cell numbers were analyzed using the MTS, trypan blue exclusion, or microscopic assays. A modified version of the standard MTS assay was established by centrifuging the cells and replacing the test medium with fresh culture medium immediately before the addition of the MTS reagent. Culture of THP-1 cells with hydralazine at concentrations of 50, 100, and 500 lM for 2 h increased absorbance (p < 0.001) in the standard MTS assay, whereas both the trypan blue exclusion assay and microscopy suggested no change in cell numbers. Culture of THP-1 cells with 100 and 500 lm hydralazine for 24 h increased absorbance (p < 0.05) in the standard MTS assay; however, trypan blue exclusion and microscopy suggested a decrease in cell numbers. In a cell-free system, hydralazine (100 and 500 lM) increased absorbance in a time-and concentrationdependent manner. The modified MTS assay produced results consistent with trypan blue exclusion and microscopy using THP-1 cells. In addition, the modified MTS assay produced reliable results when K562 and Jurkat cells were incubated with hydralazine or b-mercaptoethanol (bME). In conclusion, a simple modification of the standard MTS assay overcame the interference of hydralazine and bME when assessing suspended cells.
This study aimed to investigate the effect of the sympatholytic drug moxonidine on atherosclerosis. The effects of moxonidine on oxidised low-density lipoprotein (LDL) uptake, inflammatory gene expression and cellular migration were investigated in vitro in cultured vascular smooth muscle cells (VSMCs). The effect of moxonidine on atherosclerosis was measured by examining aortic arch Sudan IV staining and quantifying the intima-to-media ratio of the left common carotid artery in apolipoprotein E-deficient (ApoE−/−) mice infused with angiotensin II. The levels of circulating lipid hydroperoxides in mouse plasma were measured by ferrous oxidation-xylenol orange assay. Moxonidine administration increased oxidised LDL uptake by VSMCs via activation of α2 adrenoceptors. Moxonidine increased the expression of LDL receptors and the lipid efflux transporter ABCG1. Moxonidine inhibited mRNA expression of inflammatory genes and increased VSMC migration. Moxonidine administration to ApoE−/− mice (18 mg/kg/day) decreased atherosclerosis formation in the aortic arch and left common carotid artery, associated with increased plasma lipid hydroperoxide levels. In conclusion, moxonidine inhibited atherosclerosis in ApoE−/− mice, which was accompanied by an increase in oxidised LDL uptake by VSMCs, VSMC migration, ABCG1 expression in VSMCs and lipid hydroperoxide levels in the plasma.
Periodontal disease is an inflammatory condition around the teeth which affects 20-50% of the worldwide population. In periodontal disease, the bacterial plaque destroys the epithelium of the periodontal pocket and breaks the barrier that separates the tissue and the circulation, allowing oral bacteria and their endotoxins and exotoxins to enter the bloodstream. This can cause health problems, such as atherosclerosis. Aggregatibacter actinomycetemcomitans (Aa) is commonly found in patients with periodontitis and the number of Aa is associated with atherosclerotic lesion size in humans. This review focuses on Aa and atherosclerosis with an emphasis on the interaction of Aa with cell types involved in atherosclerosis formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.