The retinal pigment epithelium (RPE) comprises a monolayer of cells located between the neuroretina and the choriocapillaries. The RPE serves several important functions in the eye: formation of the blood-retinal barrier, protection of the retina from oxidative stress, nutrient delivery and waste disposal, ionic homeostasis, phagocytosis of photoreceptor outer segments, synthesis and release of growth factors, reisomerization of all-trans-retinal during the visual cycle, and establishment of ocular immune privilege. Age-related macular degeneration (AMD) is the leading cause of blindness in developed countries. Dysfunction of the RPE has been associated with the pathogenesis of AMD in relation to increased oxidative stress, mitochondrial destabilization and complement dysregulation. Photobiomodulation or near infrared light therapy which refers to non-invasive irradiation of tissue with light in the far-red to near-infrared light spectrum (630-1000 nm), is an intervention that specifically targets key mechanisms of RPE dysfunction that are implicated in AMD pathogenesis. The current evidence for the efficacy of photobiomodulation in AMD is poor but its safety profile and proposed mechanisms of action motivate further research as a novel therapy for AMD.
Aims/hypothesis Diabetic macular oedema (DME) is the leading cause of visual impairment in people with diabetes. Intravitreal injections of vascular endothelial growth factor inhibitors or corticosteroids prevent loss of vision by reducing DME, but the injections must be given frequently and usually for years. Here we report laboratory and clinical studies on the safety and efficacy of 670 nm photobiomodulation (PBM) for treatment of centre-involving DME. Methods The therapeutic effect of PBM delivered via a light-emitting diode (LED) device was tested in transgenic mice in which induced Müller cell disruption led to photoreceptor degeneration and retinal vascular leakage. We also developed a purpose-built 670 nm retinal laser for PBM to treat DME in humans. The effect of laser-delivered PBM on improving mitochondrial function and protecting against oxidative stress was studied in cultured rat Müller cells and its safety was studied in pigmented and non-pigmented rat eyes. We then used the retinal laser to perform PBM in an openlabel, dose-escalation Phase IIa clinical trial involving 21 patients with centre-involving DME. Patients received 12 sessions of PBM over 5 weeks for 90 s per treatment at a setting of 25, 100 or 200 mW/cm 2 for the three sequential cohorts of 6-8 patients each. Patients were recruited from the Sydney Eye Hospital, over the age of 18 and had centreinvolving DME with central macular thickness (CMT) of >300 μm with visual acuity of 75-35 Log minimum angle of resolution (logMAR) letters (Snellen visual acuity equivalent of 20/30-20/200). The objective of this trial was to assess the safety and efficacy of laser-delivered PBM at 2 and 6 months. The primary efficacy outcome was change in CMT at 2 and 6 months. Results LED-delivered PBM enhanced photoreceptor mitochondrial membrane potential, protected Müller cells and photoreceptors from damage and reduced retinal vascular leakage resulting from induced Müller cell disruption in transgenic mice. PBM delivered via the retinal laser enhanced mitochondrial function and protected against oxidative stress in cultured Müller cells. Laser-delivered PBM did not damage the retina in pigmented rat eyes at 100 mW/cm 2 . The completed clinical trial found a significant reduction in CMT at 2 months by 59 ± 46 μm (p = 0.03 at 200 mW/cm 2 ) and significant reduction at all three settings at 6 months (25 mW/cm 2 : 53 ± 24 μm, p = 0.04; 100 mW/cm 2 : 129 ± 51 μm, p < 0.01; 200 mW/cm 2 : 114 ± 60 μm, p < 0.01). Laser-delivered PBM was well tolerated in humans at settings up to 200 mW/cm 2 with no significant side effects.
Gout is a clinical disorder that is characterized by the deposition of monosodium urate crystals (MSU) in joints and tendons, usually in the presence of prolonged hyperuricaemia. Following an asymptomatic phase of hyperuricaemia, gout usually presents as acute monoarthritis followed by periods of remission and exacerbation. Conjunctival hyperaemia and subconjunctival haemorrhage exacerbated by purine intake are two of the more common manifestations that may go unrecognized. Other ocular and adnexal structures can be affected by urate crystal deposition and associated inflammation, with potentially vision-threatening consequences; however, ocular manifestations of gout are rare and may have been over-reported in the older literature, but our understanding of the clinic-pathological features of ocular urate deposits remains limited.
Background The Pde6brd1 (Rd1) mouse is widely used as a murine model for human retinitis pigmentosa. Understanding the spatio-temporal patterns of cone degeneration is important for evaluating potential treatments. In the present study we performed a systematic characterization of the spatio-temporal patterns of S- and M/L-opsin + cone outer segment and cell body degeneration in Rd1 mice, described the distribution and proportion of dual cones in Rd1 retinas, and examined the kinetics of microglial activation during the period of cone degeneration. Results Outer segments of S- and M/L-cones degenerated far more rapidly than their somas. Loss of both S- and M/L-opsin + outer segments was fundamentally complete by P21 in the central retina, and 90% complete by P45 in the peripheral retina. In comparison, degeneration of S- and M/L-opsin + cell bodies proceeded at a slower rate. There was a marked hemispheric asymmetry in the rate of S-opsin + and M/L-opsin + cell body degeneration. M/L-opsin + cones were more resilient to degeneration in the superior retina, whilst S-opsin + cones were relatively preserved in the inferior retina. In addition, cone outer segment and cell body degeneration occurred far more rapidly in the central than the peripheral retina. At P14, the superior retina comprised a minority of genuine S-cones with a much greater complement of genuine M/L-opsin cones and dual cones, whilst the other three retinal quadrants had broadly similar numbers of genuine S-cones, genuine M/L-cones and dual cones. At P60, approximately 50% of surviving cones in the superior, nasal and temporal quadrants were dual cones. In contrast, the inferior peripheral retina at P60 contained almost exclusively genuine S-cones with a tiny minority of dual cones. Microglial number and activity were stimulated during rod breakdown, remained relatively high during cone outer segment degeneration and loss of cone somas in the central retina, and decreased thereafter in the period coincident with slow degeneration of cone cell bodies in the peripheral retina. Conclusion The results of the present study provide valuable insights into cone degeneration in the Rd1 mouse, substantiating and extending conclusions drawn from earlier studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.