Schistosoma mansoni, like other trematodes, expresses a number of unusual calcium binding proteins which consist of an EF-hand domain joined to a dynein light chain-like (DLC-like) domain by a flexible linker. These proteins have been implicated in host immune responses and drug binding. Three members of this protein family from S. mansoni (SmTAL1, SmTAL2 and SmTAL3) have been well characterised biochemically. Here we characterise the remaining family members from this species (SmTAL4-13). All of these proteins form homodimers and all except SmTAL5 bind to calcium and manganese ions. SmTAL9, 10 and 11 also bind to magnesium ions. The antischistosomal drug, praziquantel interacts with SmTAL4, 5 and 8. Some family members also bind to calmodulin antagonists such as chlorpromazine and trifluoperazine. Molecular modelling suggests that all ten proteins adopt similar overall folds with the EF-hand and DLC-like domains folding discretely. Bioinformatics analyses suggest that the proteins may fall into two main categories: (i) those which bind calcium ions reversibly at the second EF-hand and may play a role in signalling (SmTAL1, 2, 8 and 12) and (ii) those which bind calcium ions at the first EF-hand and may play either signalling or structural roles (SmTAL7, 9, 10 and 13). The remaining proteins include those which do not bind calcium ions (SmTAL3 and 5) and three other proteins (SmTAL4, 6 and 11). The roles of these proteins are less clear, but they may also have structural roles.
Morbidity associated with hepatic and urogenital schistosomiasis stems primarily from the host immune response directed against schistosome eggs. When eggs become entrapped in host tissues, the development of fibrotic plaques drives downstream pathology. These events occur due to the antigenic nature of egg excretory/secretory products (ESPs). Both Schistosoma mansoni and S. japonicum ESPs have been shown to interact with several cell populations in the host liver including hepatocytes, macrophages, and hepatic stellate cells, with both immunomodulatory and pathological consequences. Several protein components of the ESPs of S. mansoni and S. japonicum eggs have been characterised; however, studies into the collective contents of schistosome egg ESPs are lacking.Utilising shotgun mass spectrometry and an array of in silico analyses, we identified 266, 90 and 50 proteins within the S. mansoni, S. japonicum and S. haematobium egg secretomes respectively. We identified numerous proteins with already established immunomodulatory activities, vaccine candidates and vesicle markers. Relatively few common orthologues within the ESPs were identified by BLAST, indicating that the three egg secretomes differ in content significantly. Having a clearer understanding of these components may lead to the identification of new proteins with uncharacterised immunomodulatory potential or pathological relevance. This will enhance our understanding of host-parasite interactions, particularly those occurring during chronic schistosomiasis, and pave the way towards novel therapeutics and vaccines.
During a schistosome infection, the interactions that occur between the mammalian host and the parasite change rapidly once egg laying begins. Both juvenile and adult schistosomes adapt to indefinitely avoid the host immune system. In contrast, the survival of eggs relies on quickly traversing from the host. Following the commencement of egg laying, the host immune response undergoes a shift from a type 1 helper (Th1) inflammatory response to a type 2 helper (Th2) granulomatous response. This change is driven by immunomodulatory proteins within the egg excretory/secretory products (ESPs), which interact with host cells and alter their behaviour to promote egg translocation. However, in parallel, these ESPs also provoke the development of chronic schistosomiasis pathology. Recent studies using high-throughput proteomics have begun to characterise the components of schistosome egg ESPs, particularly those of Schistosoma mansoni, S. japonicum and S. haematobium. Future application of this knowledge may lead to the identification of proteins with novel immunomodulatory activity or pathological importance. However, efforts in this area are limited by a lack of in situ or in vivo functional characterisation of these proteins. This review will highlight the current knowledge of the content and demonstrated functions of schistosome egg ESPs.
Background Schistosomiasis is a neglected tropical parasitic and chronic disease affecting hundreds of millions of people. Adult schistosomes reside in the blood stream of the definitive mammalian host. These helminth parasites possess two epithelial surfaces, the tegument and the gastrodermis, both of which interact with the host during immune evasion and in nutrient uptake. Methods Female ARC Swiss mice (4–6 weeks old) were infected percutaneously with Schistosoma japonicum cercariae freshly shed from Oncomelania hupensis quadrasi snails (Philippines strain). Fluorescent in situ hybridisation (FISH) was performed by using fresh adult S. japonicum perfused from those infected mice. Adult S. japonicum worms were processed to isolate the tegument from the carcass containing the gastrodermis; blood and bile were collected individually from infected and uninfected mice. Total DNA extracted from all those samples were used for microbiome profiling. Results FISH and microbiome profiling showed the presence of bacterial populations on two epithelial surfaces of adult worms, suggesting they were distinct not only from the host blood but also from each other. Whereas microbial diversity was reduced overall in the parasite epithelial tissues when compared with that of host blood, specific bacterial taxa, including Anoxybacillus and Escherichia, were elevated on the tegument. Minimal differences were evident in the microbiome of host blood during an active infection, compared with that of control uninfected blood. However, sampling of bile from infected animals identified some differences compared with controls, including elevated levels of Limnohabitans, Clostridium and Curvibacter. Conclusions Using FISH and microbial profiling, we were able to demonstrate, for the first time, that bacteria are presented on the epithelial surfaces of adult schistosomes. These schistosome surface-associated bacteria, which are distinct from the host blood microenvironment, should be considered as a new and important component of the host-schistosome interaction. The importance of individual bacterial species in relation to schistosome parasitism needs further elucidation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.