Renaturing cities using a regionally-focused biodiversity-led multifunctional benefits approach to urban green infrastructure AbstractIf a 'Renaturing of Cities' strategy is to maximise the ecosystem service provision of urban green infrastructure (UGI), then detailed consideration of a habitat services, biodiversity-led approach and multifunctionality are necessary rather than relying on the assumed benefits of UGI per se. The paper presents preliminary data from three case studies, two in England and one in Germany, that explore how multifunctionality can be achieved, the stakeholders required, the usefulness of an experimental approach for demonstrating transformation, and how this can be fed back into policy. We argue that incorporating locally contextualised biodiversity-led UGI design into the planning and policy spheres contributes to the functioning and resilience of the city and provides the adaptability to respond to locally contextualised challenges, such as overheating, flooding, air pollution, health and wellbeing as well as biodiversity loss. Framing our research to encompass both the science of biodiversity-led UGI and co-developing methods for incorporating a strategic approach to implementation of biodiversity-led UGI by planners and developers addresses a gap in current knowledge and begins to address barriers to UGI implementation. By combining scientific with policy learning and defined urban environmental targets with community needs, our research to date has begun to demonstrate how nature-based solutions to building resilience and adaptive governance can be strategically incorporated within cities through UGI. Highlights• Three case studies of novel urban green infrastructure implementation are presented• Effective multifunctional approaches to green infrastructure design demonstrated• That biodiversity should be an intrinsic consideration in design is illustrated• Local context and multi-stakeholder approach to design and management are integral
Abstract:Cities dominated by impervious artificial surfaces can experience myriad negative environmental impacts. Restoration of green infrastructure has been identified as a mechanism for increasing urban resilience, enabling cities to transition towards sustainable futures in the face of climate-driven change. Building rooftops represent a viable space for integrating new green infrastructure into high density urban areas. Urban rooftops also provide prime locations for photovoltaic (PV) systems. There is increasing recognition that these two technologies can be combined to deliver reciprocal benefits in terms of energy efficiency and biodiversity targets. Scarcity of scientific evaluation of the interaction between PVs and green roofs means that the potential benefits are currently poorly understood. This study documents evidence from a biodiversity monitoring study of a substantial biosolar roof installed in the Queen Elizabeth Olympic Park. Vegetation and invertebrate communities were sampled and habitat structure measured in relation to habitat niches on the roof, including PV panels. Ninety-two plant species were recorded on the roof and variation in vegetation structure associated with proximity to PV panels was identified. Almost 50% of target invertebrate species collected were designated of conservation importance. Arthropod distribution varied in relation to habitat niches on the roof. The overall aim of the MPC green roof design was to create a mosaic of habitats to enhance biodiversity, and the results of the study suggest that PV panels can contribute to niche diversity on a green roof. Further detailed study is required to fully characterise the effects of PV panel density on biodiversity. Powered by Editorial Manager® and ProduXion Manager® from Aries Systems CorporationInitial insights on the biodiversity potential of biosolar roofs: A London Olympic Park green roof case study AbstractCities dominated by impervious artificial surfaces can experience myriad negative environmental impacts. Restoration of green infrastructure has been identified as a mechanism for increasing urban resilience, enabling cities to transition towards sustainable futures in the face of climate-driven change. Building rooftops represent a viable space for integrating new green infrastructure into high density urban areas. Urban rooftops also provide prime locations for photovoltaic (PV) systems. There is increasing recognition that these two technologies can be combined to deliver reciprocal benefits in terms of energy efficiency and biodiversity targets. Scarcity of scientific evaluation of the interaction between PVs and green roofs means that the potential benefits are currently poorly understood.This study documents evidence from a biodiversity monitoring study of a substantial biosolar roof installed in the Queen Elizabeth Olympic Park. Vegetation and invertebrate communities were sampled and habitat structure measured in relation to habitat niches on the roof, including PV panels. Ninety-two plant species were re...
Blanket bogs are a globally rare type of ombrotrophic peatland internationally recognized for long‐term terrestrial carbon storage, the potential to serve as carbon sinks, habitat provision and for their palaeoenvironmental archive. This habitat is protected in the European Union under the Habitats Directive (92/43/EEC), but a number of blanket bogs located in the Cantabrian Mountains (northern Spain), representing the southernmost known edge‐of‐range for this habitat in Europe, are currently not recognized and are at increased threat of loss. Using climatic data, topography, aerial photography and peat depth surveys, this study has identified 10 new areas of blanket bog located between the administrative regions of Cantabria and Castilla y León. Peat depth data and topography were used to provide a detailed geomorphological description and hydromorphological classification (mesotope units) of these currently unrecognized areas of blanket bog. Maximum peat depth measured across the 10 sites ranged from 1.61 to 3.78 m, covering a total area of 18.6 ha of blanket bog (>40 cm peat depth). The volume of peat accumulated across the sites was determined to be more than 216 000 m3 and is estimated to hold 19.89 ± 3.51 kt C. Twenty‐four individual hydrological mesotope units were described, indicating a diverse assemblage of blanket bogs in this region. The peatlands identified in this research extend the known limit of blanket bogs in Europe farther south than previously recorded and – combined with four other unprotected blanket bogs recently identified in the Cantabrian Mountains – these peatlands represent 10.5% of blanket bog currently recognized and protected in Spain. The range of anthropogenic pressures currently acting on peatlands in the Cantabrian Mountains indicates that without protection these important landforms and stored carbon may be lost. An urgent update of European peatland inventories is thus required to preserve these valuable carbon stores and potential carbon sinks. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd
ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.