The shell morphology of limpets can be cryptic and highly variable, within and between species. Therefore, the visual identification of species can be troublesome even for experts. Here, we demonstrate the capability of computer vision models as a new method to assist with identifications. We investigate the ability of computers to distinguish between four species and two genera of limpets from the Baja California peninsula (Mexico) from digital images of shells from both dorsal and ventral orientations. Overall, the models performed marginally better (97.9%) than experts (97.5%) when predicting the same set of images and did so 240x faster. Moreover, we utilised a heatmap system to both verify that models are focussing on the specimens and to view which features on the specimens the models used to distinguish between species and genera. We then enlisted the expertise of limpet ecologists specialised in identification of species from the Baja peninsula to comment on whether the heatmaps are indeed focusing on specific morphological features per species/genus. They confirm that in their opinion, the majority of the heatmaps appear to be highlighting areas and features of morphological importance for distinguishing between groups. Our findings reveal that the cutting-edge technology of computer vision holds tremendous potential in enhancing species identification techniques used by taxonomists and ecologists. Not only does it provide a complementary approach to traditional methods, but it also opens new avenues for exploring the biology and ecology of limpets in greater detail.
Ruffed lemurs (Varecia variegata and Varecia rubra) are categorized as Critically Endangered on the IUCN Red List, and genetic studies are needed for assessing the conservation value of captive populations. Using 280 mitochondrial DNA (mtDNA) D-loop sequences, we studied the genetic diversity and structure of captive ruffed lemurs in Madagascar, Europe and North America. We found 10 new haplotypes: one from the European captive V. rubra population, three from captive V. variegata subcincta (one from Europe and two from Madagascar) and six from other captive V. variegata in Madagascar. We found low mtDNA genetic diversity in the European and North American captive populations of V. variegata. Several founder individuals shared the same mtDNA haplotype and therefore should not be assumed to be unrelated founders when making breeding recommendations. The captive population in Madagascar has high genetic diversity, including haplotypes not yet identified in wild populations. We determined the probable geographical provenance of founders of captive populations by comparison with previous studies; all reported haplotypes from captive ruffed lemurs were identical to or clustered with haplotypes from wild populations located north of the Mangoro River in Madagascar. Effective conservation strategies for wild populations, with potentially unidentified genetic diversity, should still be considered the priority for conserving ruffed lemurs. However, our results illustrate that the captive population in Madagascar has conservation value as a source of potential release stock for reintroduction or reinforcement projects and that cross-regional transfers within the global captive population could increase the genetic diversity and therefore the conservation value of each regional population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.