Target‐capture approach has improved over the past years, proving to be very efficient tool for selectively sequencing genetic regions of interest. These methods have also allowed the use of noninvasive samples such as faeces (characterized by their low quantity and quality of endogenous DNA) to be used in conservation genomic, evolution and population genetic studies. Here we aim to test different protocols and strategies for exome capture using the Roche SeqCap EZ Developer kit (57.5 Mb). First, we captured a complex pool of DNA libraries. Second, we assessed the influence of using more than one faecal sample, extract and/or library from the same individual, to evaluate its effect on the molecular complexity of the experiment. We validated our experiments with 18 chimpanzee faecal samples collected from two field sites as a part of the Pan African Programme: The Cultured Chimpanzee. Those two field sites are in Kibale National Park, Uganda (N = 9) and Loango National Park, Gabon (N = 9). We demonstrate that at least 16 libraries can be pooled, target enriched through hybridization, and sequenced allowing for the genotyping of 951,949 exome markers for population genetic analyses. Further, we observe that molecule richness, and thus, data acquisition, increase when using multiple libraries from the same extract or multiple extracts from the same sample. Finally, repeated captures significantly decrease the proportion of off‐target reads from 34.15% after one capture round to 7.83% after two capture rounds, supporting our conclusion that two rounds of target enrichment are advisable when using complex faecal samples.
Large‐scale genomic studies of wild animal populations are often limited by access to high‐quality DNA. Although noninvasive samples, such as faeces, can be readily collected, DNA from the sample producers is usually present in low quantities, fragmented, and contaminated by microorganism and dietary DNAs. Hybridization capture can help to overcome these impediments by increasing the proportion of subject DNA prior to high‐throughput sequencing. Here we evaluate a key design variable for hybridization capture, the number of rounds of capture, by testing whether one or two rounds are most appropriate, given varying sample quality (as measured by the ratios of subject to total DNA). We used a set of 1,780 quality‐assessed wild chimpanzee (Pan troglodytes schweinfurthii) faecal samples and chose 110 samples of varying quality for exome capture and sequencing. We used multiple regression to assess the effects of the ratio of subject to total DNA (sample quality), rounds of capture and sequencing effort on the number of unique exome reads sequenced. We not only show that one round of capture is preferable when the proportion of subject DNA in a sample is above ~2%–3%, but also explore various types of bias introduced by capture, and develop a model that predicts the sequencing effort necessary for a desired data yield from samples of a given quality. Thus, our results provide a useful guide and pave a methodological way forward for researchers wishing to plan similar hybridization capture studies.
BackgroundAs habitat degradation and fragmentation continue to impact wildlife populations around the world, it is critical to understand the behavioral flexibility of species in these environments. In Uganda, the mostly unprotected forest fragment landscape between the Budongo and Bugoma Forests is a potential corridor for chimpanzees, yet little is known about the status of chimpanzee populations in these fragments.ResultsFrom 2011 through 2013, we noninvasively collected 865 chimpanzee fecal samples across 633 km2 and successfully genotyped 662 (77%) at up to 14 microsatellite loci. These genotypes corresponded to 182 chimpanzees, with a mean of 3.5 captures per individual. We obtained population size estimates of 256 (95% confidence interval 246–321) and 319 (288–357) chimpanzees using capture-with-replacement and spatially explicit capture–recapture models, respectively. The spatial clustering of associated genotypes suggests the presence of at least nine communities containing a minimum of 8–33 individuals each. Putative community distributions defined by the locations of associated genotypes correspond well with the distribution of 14 Y-chromosome haplotypes.ConclusionsThese census figures are more than three times greater than a previous estimate based on an extrapolation from small-scale nest count surveys that tend to underestimate population size. The distribution of genotype clusters and Y-chromosome haplotypes together indicate the presence of numerous male philopatric chimpanzee communities throughout the corridor habitat. Our findings demonstrate that, despite extensive habitat loss and fragmentation, chimpanzees remain widely distributed and exhibit distinct community home ranges. Our results further imply that elusive and rare species may adapt to degraded habitats more successfully than previously believed. Their long-term persistence is unlikely, however, if protection is not afforded to them and habitat loss continues unabated.Electronic supplementary materialThe online version of this article (doi:10.1186/s12898-015-0052-x) contains supplementary material, which is available to authorized users.
As habitat loss and fragmentation place growing pressure on endangered nonhuman primate populations, researchers find increasing evidence for novel responses in behavior. In western Uganda between the Budongo and Bugoma Forests, chimpanzees (Pan troglodytes schweinfurthii) inhabit a mosaic landscape comprising forest fragments, human settlements, and agricultural land. We recorded nests and feeding evidence of unhabituated chimpanzees in this region over a 12-mo period. We found extensive evidence of nesting in introduced tree species, including eucalyptus (Eucalyptus grandis), guava (Psidium guajava), cocoa (Theobroma cacao), and Caribbean pine (Pinus caribaea). In addition, we found instances of ground nesting, nest reuse, and composite nests constructed from branches of multiple trees. This evidence may indicate a lack of suitable nesting trees or attempts by chimpanzees to nest in areas of riparian forest that allow them to avoid human detection. We also found new evidence for eucalyptus bark feeding by chimpanzees. Such evidence suggests chimpanzees respond flexibly to mitigate anthropogenic pressures in human-dominated landscapes. The limits of such flexibility remain unknown. Further research is needed to examine systematically the factors influencing the use of such resources and to understand better the extent to which chimpanzees can persist while relying on them.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.