Summary: A polygenic risk score (PRS) is a sum of trait-associated alleles across many genetic loci, typically weighted by effect sizes estimated from a genome-wide association study. The application of PRS has grown in recent years as their utility for detecting shared genetic aetiology among traits has become appreciated; PRS can also be used to establish the presence of a genetic signal in underpowered studies, to infer the genetic architecture of a trait, for screening in clinical trials, and can act as a biomarker for a phenotype. Here we present the first dedicated PRS software, PRSice (‘precise'), for calculating, applying, evaluating and plotting the results of PRS. PRSice can calculate PRS at a large number of thresholds (“high resolution”) to provide the best-fit PRS, as well as provide results calculated at broad P-value thresholds, can thin Single Nucleotide Polymorphisms (SNPs) according to linkage disequilibrium and P-value or use all SNPs, handles genotyped and imputed data, can calculate and incorporate ancestry-informative variables, and can apply PRS across multiple traits in a single run. We exemplify the use of PRSice via application to data on schizophrenia, major depressive disorder and smoking, illustrate the importance of identifying the best-fit PRS and estimate a P-value significance threshold for high-resolution PRS studies.Availability and implementation: PRSice is written in R, including wrappers for bash data management scripts and PLINK-1.9 to minimize computational time. PRSice runs as a command-line program with a variety of user-options, and is freely available for download from http://PRSice.infoContact: jack.euesden@kcl.ac.uk or paul.oreilly@kcl.ac.ukSupplementary information: Supplementary data are available at Bioinformatics online.
PRS was a powerful predictor of case-control status in a European sample of patients with FEP, even though a large proportion did not have an established diagnosis of schizophrenia at the time of assessment. PRS was significantly different between those case subjects who developed schizophrenia from those who did not, although the discriminative accuracy may not yet be sufficient for clinical utility in FEP.
BackgroundIt is often assumed that selection (including participation and dropout) does not represent an important source of bias in genetic studies. However, there is little evidence to date on the effect of genetic factors on participation.MethodsUsing data on mothers (N = 7486) and children (N = 7508) from the Avon Longitudinal Study of Parents and Children, we: (i) examined the association of polygenic risk scores for a range of sociodemographic and lifestyle characteristics and health conditions related to continued participation; (ii) investigated whether associations of polygenic scores with body mass index (BMI; derived from self-reported weight and height) and self-reported smoking differed in the largest sample with genetic data and a subsample who participated in a recent follow-up; and (iii) determined the proportion of variation in participation explained by common genetic variants, using genome-wide data.ResultsWe found evidence that polygenic scores for higher education, agreeableness and openness were associated with higher participation; and polygenic scores for smoking initiation, higher BMI, neuroticism, schizophrenia, attention-deficit hyperactivity disorder (ADHD) and depression were associated with lower participation. Associations between the polygenic score for education and self-reported smoking differed between the largest sample with genetic data [odds ratio (OR) for ever smoking per standard deviation (SD) increase in polygenic score: 0.85, 95% confidence interval (CI): 0.81, 0.89} and subsample (OR: 0.96, 95% CI: 0.89, 1.03). In genome-wide analysis, single nucleotide polymorphism based heritability explained 18–32% of variability in participation.ConclusionsGenetic association studies, including Mendelian randomization, can be biased by selection, including loss to follow-up. Genetic risk for dropout should be considered in all analyses of studies with selective participation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.