We conjecture a new set of analytic relations for scattering amplitudes in planar N=4 super Yang-Mills theory. They generalize the Steinmann relations and are expressed in terms of the cluster algebras associated to Gr(4,n). In terms of the symbol, they dictate which letters can appear consecutively. We study heptagon amplitudes and integrals in detail and present symbols for previously unknown integrals at two and three loops which support our conjecture.
We address the appearance of algebraic singularities in the symbol alphabet of scattering amplitudes in the context of planar $$ \mathcal{N} $$
N
= 4 super Yang-Mills theory. We argue that connections between cluster algebras and tropical geometry provide a natural language for postulating a finite alphabet for scattering amplitudes beyond six and seven points where the corresponding Grassmannian cluster algebras are finite. As well as generating natural finite sets of letters, the tropical fans we discuss provide letters containing square roots. Remarkably, the minimal fan we consider provides all the square root letters recently discovered in an explicit two-loop eight-point NMHV calculation.
We exploit the recently described property of cluster adjacency for scattering amplitudes in planar N = 4 super Yang-Mills theory to construct the symbol of the four-loop NMHV heptagon amplitude. We use a manifestly cluster adjacent ansatz and describe how the parameters of this ansatz are determined using simple physical consistency requirements. We then specialise our answer for the amplitude to the multi-Regge limit, finding agreement with previously available results up to the next-to-leading logarithm, and obtaining new predictions up to (next-to) 3 -leading-logarithmic accuracy.
We provide a cluster-algebraic approach to the computation of the recently introduced generalised biadjoint scalar amplitudes related to Grassmannians Gr(k, n). A finite cluster algebra provides a natural triangulation for the tropical Grassmannian whose volume computes the scattering amplitudes. Using this method one can construct the entire colour-ordered amplitude via mutations starting from a single term.1
We explore further the notion of cluster adjacency, focussing on non-MHV amplitudes. We extend the notion of adjacency to the BCFW decomposition of tree-level amplitudes. Adjacency controls the appearance of poles, both physical and spurious, in individual BCFW terms. We then discuss how this notion of adjacency is connected to the adjacency already observed at the level of symbols of scattering amplitudes which controls the appearance of branch cut singularities. Poles and symbols become intertwined by cluster adjacency and we discuss the relation of this property to theQ-equation which imposes constraints on the derivatives of the transcendental functions appearing in loop amplitudes. 1
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.