Computational resources for research in legal environments have historically implied remote access to large databases of legal documents such as case law, statutes, law reviews and administrative materials. Today, by contrast, there exists enormous growth in lawyers' electronic work product within these environments, specifically within law firms. Along with this growth has come the need for accelerated knowledge management-automated assistance in organizing, analyzing, retrieving and presenting this content in a useful and distributed manner.In cases where a relevant legal taxonomy is available, together with representative labeled data, automated text classification tools can be applied. In the absence of these resources, document clustering offers an alternative approach to organizing collections, and an adjunct to search.To explore this approach further, we have conducted sets of successively more complex clustering experiments using primary and secondary law documents as well as actual law firm data. Tests were run to determine the efficiency and effectiveness of a number of essential clustering functions. After examining the performance of traditional or hard clustering applications, we investigate soft clustering (multiple cluster assignments) as well as hierarchical clustering. We show how these latter clustering approaches are effective, in terms of both internal and external quality measures, and useful to legal researchers. Moreover, such techniques can ultimately assist in the automatic or semi-automatic generation of taxonomies for subsequent use by classification programs.
We perform a survey into the scope and utility of opinion mining in legal Weblogs (a.k.a. blawgs). The number of 'blogs' in the legal domain is growing at a rapid pace and many potential applications for opinion detection and monitoring are arising as a result. We summarize current approaches to opinion mining before describing different categories of blawgs and their potential impact on the law and the legal profession. In addition to educating the community on recent developments in the legal blog space, we also conduct some introductory opinion mining trials. We first construct a Weblog test collection containing blog entries that discuss legal search tools. We subsequently examine the performance of a language modeling approach deployed for both subjectivity analysis (i.e., is the text subjective or objective?) and polarity analysis (i.e., is the text affirmative or negative towards its subject?). This work may thus help establish early baselines for these core opinion mining tasks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.