Near-instantaneous current-voltage relationships and shot-noise analysis of amiloride-induced current fluctuations were used to estimate apical membrane permeability to Na (PNa), intraepithelial Na activity (Nac), single-channel Na currents (i) and the number of open (conducting) apical Na channels (N0), in the urinary bladder of the toad (Bufo marinus). To facilitate voltage-clamping of the apical membrane, the serosal plasma membranes were depolarized by substitution of a high KCl (85 mM) sucrose (50 mM) medium for the conventional Na-Ringer's solution on the serosal side. Aldosterone (5 X 10(-7) M, serosal side only) elicited proportionate increases in the Na-specific current (INa and in PNa, with no significant change in the dependence of PNa on mucosal Na (Nao). PNa and the control of PNa by aldosterone were substrate-dependent: In substrate-depleted bladders, pretreatment with aldosterone markedly augmented the response to pyruvate (7.5 X 10(-3) M) which evoked coordinate and equivalent increases in INa and PNa. The aldosterone-dependent increase in PNa was a result of an equivalent increase in the area density of conducting apical Na channels. The computed single-channel current did not change. We propose that, following aldosterone-induced protein synthesis, there is a reversible metabolically-dependent recruitment of preexisting Na channels from a reservoir of electrically undetectable channels. The results do not exclude the possibility of a complementary induction of Na-channel synthesis.
Urinary bladders of Bufo marinus were depolarized, by raising the serosal K concentration, to facilitate voltage-clamping of the apical membrane. Passive Na transport across the apical membrane was then studied with near-instantaneous current-voltage curves obtained before and after eliciting a natriferic response with oxytocin. Fitting with the constant-field equation showed that the natriferic effect is accounted for by an increase in the apical Na permeability. It is accompanied by a small increase in cellular Na activity. Furthermore, fluctuation analysis of the amiloride-induced shot-noise component of the short-circuit current indicated that the permeability increase is not due to increased Na translocation through those Na channels which were already conducting prior to hormonal stimulation. Rather, the natriferic effects is found to be based on an increase in the population of transporting channels. It appears that, in response to the hormone, Na channels are rapidly "recruited" from a pool of electrically silent channels.
Fluctuation analysis of Na current passing the apical membrane in the skin of Rana ridibunda was used to study the kinetics of Na-channel blocking by several organic cations present in the outer solution together with 60 mM Na. The ratios of the apparent off-rate and on-rate constants (the microscopic inhibition constants) thus obtained for triamterene, triaminopyrimidine (TAP), 5,6-diCl-amiloride, 5H-amiloride and amiloride itself are found to be in the mean about sevenfold smaller than the corresponding inhibition constants obtained from macroscopic dose-response curves. The apparent discrepancy is explicable by competition of the organic blocker with the channel block by Na ions (the self-inhibition effect). The type of interaction between extrinsic blockage and self-inhibition may be purely competitive or mixed. However, in case of mixed inhibition the competitive component must dominate the noncompetitive component by at least seven to one.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.