Osteoblasts and adipocytes differentiate from a common precursor cell, the mesenchymal stem cell (MSC). Adenosine is known to signal via four adenosine receptor subtypes, and significantly, recent findings indicate that these may play a role in MSC differentiation. We therefore investigated adenosine receptor expression and activation during the differentiation of MSCs to osteoblasts and adipocytes. The A 2B R was dominant in MSCs, and its expression and activity were transiently upregulated at early stages of osteoblastic differentiation. Both activation and overexpression of A 2B R induced the expression of osteoblast-related genes [Runx2 and alkaline phosphatase (ALP)], as well as ALP activity, and stimulation increased osteoblast mineralization. The expression of A 2A R was upregulated during later stages of osteoblastic differentiation, when its activation stimulated ALP activity. Differentiation of MSCs to adipocytes was accompanied by significant increases in A 1 R and A 2A R expression, and their activation was associated with increased adipogenesis. Enhanced A 2A R expression was sufficient to promote expression of adipocyte-related genes (PPARg and C/EBPa), and its activation resulted in increased adipocytic differentiation and lipid accumulation. In contrast, the A 1 R was involved mainly in lipogenic activity of adipocytes rather than in their differentiation. These results show that adenosine receptors are differentially expressed and involved in lineage-specific differentiation of MSCs. We conclude, therefore, that fruitful strategies for treating diseases associated with an imbalance in the differentiation and function of these lineages should include targeting adenosine receptor signal pathways. Specifically, these research avenues will be useful in preventing or treating conditions with insufficient bone or excessive adipocyte formation. ß
We showed that human osteoprogenitor cells produced adenosine and expressed ecto-5-nucleotidase and all four adenosine receptor subtypes. Adenosine stimulated IL-6 but inhibited osteoprotegerin secretion, suggesting that adenosine is a newly described regulator of progenitor cell function.Introduction: Maintaining skeletal homeostasis relies on there being a balance between bone formation and resorption; an imbalance between these processes can lead to diseases such as osteoporosis and rheumatoid arthritis. Recent reports showed that locally produced ATP, acting through P2 receptors, has pronounced effects on bone formation. However, ATP can be enzymatically cleaved to adenosine that has little or no activity at P2 receptors but mediates its action through the P1 family of receptors. We studied whether adenosine may also have an important role in controlling bone cell differentiation and function. Materials and Methods: Extracellular adenosine levels were analyzed by high-performance liquid chromatography in HCC1 and bone marrow stromal (BMS) cells. Ecto-5Ј-nucleotidase (CD73) expression and activity was determined by RT-PCR, immunocytochemistry, and the cleavage of etheno-AMP to ethenoadenosine. Adenosine receptor expression and activity were determined by RT-PCR and cAMP measurements. The effects of adenosine receptor agonists on IL-6, osteoprotegerin (OPG), and RANKL expression were determined by ELISA and QRT-PCR. Results: HCC1 and BMS cells produce adenosine and express CD73 and all four adenosine receptor subtypes. The A2b receptor was shown to be functionally dominant in HCC1 cells, as determined by cAMP production and in its stimulation of IL-6 secretion. Adenosine receptor agonism also inhibited OPG secretion and OPG but not RANKL mRNA expression. Conclusions: Our findings show that HCC1 and primary BMS cells produce adenosine, express CD73 and all four adenosine receptor subtypes. In HCC1 cells, adenosine has a potent stimulatory action on IL-6 secretion but an inhibitory action on OPG expression. These data show for the first time that adenosine may be an important regulator of progenitor cell differentiation and hence an important local contributor to the regulation of bone formation and resorption.
The use of nanoparticles in medicine is ever increasing, and it is important to understand their targeted and non-targeted effects. We have previously shown that nanoparticles can cause DNA damage to cells cultured below a cellular barrier without crossing this barrier. Here, we show that this indirect DNA damage depends on the thickness of the cellular barrier, and it is mediated by signalling through gap junction proteins following the generation of mitochondrial free radicals. Indirect damage was seen across both trophoblast and corneal barriers. Signalling, including cytokine release, occurred only across bilayer and multilayer barriers, but not across monolayer barriers. Indirect toxicity was also observed in mice and using ex vivo explants of the human placenta. If the importance of barrier thickness in signalling is a general feature for all types of barriers, our results may offer a principle with which to limit the adverse effects of nanoparticle exposure and offer new therapeutic approaches.
Background: Adenosine mediates its actions through four G protein-coupled receptors, A1, A2a, A2b and A3. The A1 receptor (A1R) is dominant in adipocytes where it mediates many actions that include inhibition of lipolysis, stimulation of leptin secretion and protection against obesity-related insulin resistance. Objective: The objective of this study is to investigate whether induced expression of A1Rs stimulates adipogenesis, or whether A1R expression is a consequence of cells having an adipocyte phenotype. Methodology: Human A1R and A2b receptors (A2bRs) were stably transfected into a murine osteoblast precursor cell line, 7F2. Adipogenesis was determined by lipid accumulation and expression of adipocyte and osteoblast marker molecules. Adenosine receptor expression and activation of associated signal molecules were also evaluated as 7F2 cells were induced to differentiate to adipocytes. Results: 7F2 cells transfected with the A1R showed increased adipocyte marker mRNA expression; lipoprotein lipase and glycerol-3-phosphate dehydrogenase were both upregulated, whereas the osteoblast marker alkaline phosphatase (ALP) was downregulated. When cultured in adipocyte differentiating media, such cells also showed increased adipogenesis as judged by lipid accumulation. Conversely, A2bR transfection stimulated osteocalcin and ALP expression, and in addition, adipogenesis was inhibited in the presence of adipocyte differentiation media. Adipogenic differentiation of naive 7F2 cells also resulted in increased expression of the A1R and reduced or modified expression of the A2a and A2bR. The loss of A2 receptors after adipogenic differentiation was accompanied by a loss of cyclic adenosine monophosphate and ERK1/2 signalling. Conclusion: These data show that expression of A1Rs induced adipocyte differentiation, whereas A2bR expression inhibited adipogenesis and stimulated an osteoblastic phenotype. These data suggest that targeting A1 and A2bR could be considered in the management of obesity and diabetes. Targeting adenosine signal pathways may be useful in treatment strategies for diseases in which there is an imbalance between osteoblasts and adipocytes.
1 Activation of adenosine receptors in folliculostellate (FS) cells of the pituitary gland leads to the secretion of IL-6 and vascular endothelial growth factor (VEGF). 2 We investigated the action of adenosine A2 receptor agonists on IL-6 and VEGF secretion in two murine FS cell lines (TtT/GF and Tpit/F1), and demonstrated a rank order of potency, 5 0 -Nethylcarboxamidoadenosine (NECA)42-p-(2-carboxyethyl)phenethylamino-5 0 -N-ethylcarboxamidoadenosine4adenosine, suggesting mediation via the A2b receptor. 3 NECA-mediated IL-6 release was inhibited by the PLC inhibitor 1-[6-((17b-3-methoxyestra-1,3,5(10)-tiene-17-yl)amino)hexyl]-1H-pyrrole-2,5-dione, the PI3 kinase inhibitor wortmannin and the PKC inhibitors bisindolylmaleimide 1 and bisindolymaleimide X1 HCl (Ro-32-0432). 4 NECA-mediated IL-6 release was attenuated (o50%) by the extracellular signal-regulated kinase MAPK inhibitor 2 0 -amino-3 0 -methoxyflavone, and completely (495%) inhibited by the p38 MAPK inhibitor 4-(4-fluorophenyl)-2-(4-methylsulphinylphenyl)-5-(4-pyridyl)1H-imidazole. 5 NECA stimulates p38 MAPK phosphorylation that is inhibited by Ro-32-0432 but not by wortmannin. 6 Dexamethasone inhibits NECA-stimulated IL-6 and VEGF secretion. 7 These findings indicate that adenosine can stimulate IL-6 secretion in FS cells via the A2b receptor coupled principally to PLC/PKC and p38 MAPK; such an action may be important in the modulation of inflammatory response processes in the pituitary gland.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.