Acquisition of dense, three-dimensional, force fields with intramolecular resolution via noncontact atomic force microscopy (NC-AFM) has yielded enormous progress in our ability to characterize molecular and two-dimensional materials at the atomic scale. To date, intramolecular force mapping has been performed exclusively at cryogenic temperatures, due to the stability afforded by low temperature operation, and as the carbon monoxide functionalization of the metallic scanning probe tip, normally required for submolecular resolution, is only stable at low temperature. In this paper we show that high-resolution, three-dimensional force mapping of a single organic molecule is possible even at room temperature. The physical limitations of room temperature operation are overcome using semiconducting materials to inhibit molecular diffusion and create robust tip apexes, while challenges due to thermal drift are overcome with atom tracking based feedforward correction. Three-dimensional force maps comparable in spatial and force resolution to those acquired at low temperature are demonstrated, permitting a quantitative analysis of the adsorption induced changes in the geometry of the molecule at the picometer level.
We performed imaging and manipulation of epitaxially grown Pb adatom structures on the Si(100) surface by non-contact atomic force microscopy (NC-AFM) in ultra-high-vacuum (UHV) and at cryogenic temperatures. We observe several distinct contrast modes during imaging, which we assign to termination of the scanning probe tip by either a single Si, or single Pb, atom, via quantitative comparison of atomic resolution force spectroscopy experiments with ab initio density functional theory (DFT) simulations. We show that the Pb adatom structures can be controllably manipulated via mechano-chemical means, and identify a novel semi-deterministic manipulation strategy that arises from the combination of low temperature operation and the asymmetric diffusion barriers present on the Si(100) surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.