In this paper, I argue that all expressions for abstract objects are meaningless. My argument closely follows David Lewis' argument against the intelligibility of certain theories of possible worlds, but modifies it in order to yield a general conclusion about language pertaining to abstract objects. If my Lewisian argument is sound, not only can we not know that abstract objects exist, we cannot even refer to or think about them. However, while the Lewisian argument strongly motivates nominalism, it also undermines certain nominalist theories.
In this paper, I develop a “safety result” for applied mathematics. I show that whenever a theory in natural science entails some non-mathematical conclusion via an application of mathematics, there is a counterpart theory that carries no commitment to mathematical objects, entails the same conclusion, and the claims of which are true if the claims of the original theory are “correct”: roughly, true given the assumption that mathematical objects exist. The framework used for proving the safety result has some advantages over existing nominalistic accounts of applied mathematics. It also provides a nominalistic account of pure mathematics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.