We consider the number distribution of topological defects resulting from the finite-time crossing of a continuous phase transition and identify signatures of universality beyond the mean value, predicted by the Kibble-Zurek mechanism. Statistics of defects follows a binomial distribution with N Bernouilli trials associated with the probability of forming a topological defect at the locations where multiple domains merge. All cumulants of the distribution are predicted to exhibit a common universal power-law scaling with the quench time in which the transition is crossed. Knowledge of the distribution is used to discussed the onset of adiabatic dynamics and bound rare events associated with large deviations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.