We used the standard comet assay successfully to generate in vitro dose-response curves under oxic and hypoxic conditions. We then made mixtures of cells that had been irradiated with 3 and 9 Gy of X-rays to simulate two subpopulations in a tumor, but efforts to accurately detect and quantify the subpopulations using the standard comet assay were unsuccessful. Therefore, we investigated a modified comet assay to determine whether it could be used for measuring hypoxia in our model systems. U251 MG cells were grown as subcutaneous tumors in athymic mice; U251 MG and U87 MG cells were grown as intracerebral (i.c.) tumors in athymic rats. Animals were injected with RSU 1069, irradiated, and euthanized. Tumors and normal brains were removed, and the cells were analyzed using a modified comet assay. Differences in comet tail moment distributions between tumor and contralateral normal brain, using tail moments at either the 25th or 50th percentile in each distribution, were taken as measures of the degree of tumor hypoxia. For U251 MG tumors, there was a positive relationship between tumor size and the degree of hypoxia, whereas preliminary data from U87 MG i.c. tumors showed less hypoxia and no apparent relationship between tumor size and hypoxia.
To facilitate investigation of the molecular mechanisms of tumor cell radiosensitivities, we have generated a set of clones with different radiosensitivities from a human glioma cell line U-251 MG-Ho. Forty-four colonies were isolated by subjecting parent cells to the mutagen N-methylnitrosourea and then irradiating these cells with increasing doses of x-rays. About half of the clones displayed different radiosensitivities than the parent cells. We selected one of the most sensitive clones (X3i) and one of the most resistant clones (Y6) for further study. Isoeffective doses for these two clones differed by about a factor of 1.7; the relative radiosensitivities of both clones were stable for at least 30 cell culture passages. These two clones do not differ significantly in either the induction or repair of radiation-induced DNA double-strand breaks as measured by pulsed field gel electrophoresis. Radiation-induced apoptosis measured by terminal deoxynucleotide transferase-mediated dUTP nick end labeling assay and micronucleus formation were similar in both clones. However, potentially lethal damage repair was greater in the radioresistant Y6 clone than in the radiosensitive X3i clone as determined by colony-forming efficiency assay.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.