Social live video streaming (SLVS) applications are becoming increasingly popular with the rise of platforms such as Facebook-Live, YouTube-Live, Twitch and Periscope. A key characteristic that differentiates this new class of applications from traditional live streaming is that these live streams are watched by viewers at different delays; while some viewers watch a live stream in real-time, others view the content in a time-shifted manner at different delays. In the presence of variability in the upload bandwidth, which is typical in mobile environments, existing solutions silo viewers into either receiving low latency video at a lower quality or a higher quality video with a significant delay penalty, without accounting for the presence of diverse time-shifted viewers. In this paper, we present Vantage, a live-streaming upload solution that improves the overall quality of experience for diverse time-shifted viewers by using selective quality-enhancing retransmissions in addition to real-time frames, optimizing the encoding schedules to balance the allocation of the available bandwidth between the two. Our evaluation using real-world mobile network traces shows that Vantage can provide high quality simultaneously for both low-latency and delayed viewing. For delayed viewing, Vantage achieves an average improvement of 19.9% over real-time optimized video streaming techniques across all the network traces and test videos, with observed gains of up to 42.9%. These benefits come at the cost of an average drop in realtime quality of 3.3%, with a maximum drop of 7.1%. This represents a significant performance improvement over current techniques used for SLVS applications, which primarily optimize the video upload for real-time viewing.
Machine learning models are becoming the primary workhorses for many applications. Services deploy models through prediction serving systems that take in queries and return predictions by performing inference on models. Prediction serving systems are commonly run on many machines in cluster settings, and thus are prone to slowdowns and failures that inflate tail latency. Erasure coding is a popular technique for achieving resource-efficient resilience to data unavailability in storage and communication systems. However, existing approaches for imparting erasure-coded resilience to distributed computation apply only to a severely limited class of functions, precluding their use for many serving workloads, such as neural network inference. We introduce parity models, a new approach for enabling erasure-coded resilience in prediction serving systems. A parity model is a neural network trained to transform erasurecoded queries into a form that enables a decoder to reconstruct slow or failed predictions. We implement parity models in ParM, a prediction serving system that makes use of erasure-coded resilience. ParM encodes multiple queries into a "parity query, " performs inference over parity queries using parity models, and decodes approximations of unavailable predictions by using the output of a parity model. We showcase the applicability of parity models to image classification, speech recognition, and object localization tasks. Using parity models, ParM reduces the gap between 99.9th percentile and median latency by up to 3.5×, while maintaining the same median. These results display the potential of parity models to unlock a new avenue to imparting resourceefficient resilience to prediction serving systems. Jack Kosaian is supported by an SOSP 2019 student scholarship from the ACM Special Interest Group in Operating Systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.