SummaryAlgorithms designed to identify canonical yeast prions predict that ~250 human proteins, including several RNA-binding proteins associated with neurodegenerative disease, harbor a distinctive prion-like domain (PrLD) enriched in uncharged polar amino acids and glycine. PrLDs in RNA-binding proteins are essential for the assembly of ribonucleoprotein granules. However, the interplay between human PrLD function and disease is not understood. Here, we define pathogenic mutations in PrLDs of hnRNPA2/B1 and hnRNPA1 in families with inherited degeneration affecting muscle, brain, motor neuron and bone, and a case of familial ALS. Wild-type hnRNPA2 and hnRNPA1 display an intrinsic tendency to assemble into self-seeding fibrils, which is exacerbated by the disease mutations. Indeed, the pathogenic mutations strengthen a ‘steric zipper’ motif in the PrLD, which accelerates formation of self-seeding fibrils that cross-seed polymerization of wild-type hnRNP. Importantly, the disease mutations promote excess incorporation of hnRNPA2 and hnRNPA1 into stress granules and drive the formation of cytoplasmic inclusions in animal models that recapitulate the human pathology. Thus, dysregulated polymerization caused by a potent mutant ‘steric zipper’ motif in a PrLD can initiate degenerative disease. Related proteins with PrLDs must be considered candidates for initiating and perhaps propagating proteinopathies of muscle, brain, motor neuron and bone.
Defects in iron absorption and utilization lead to iron deficiency and overload disorders. Adult mammals absorb iron through the duodenum, whereas embryos obtain iron through placental transport. Iron uptake from the intestinal lumen through the apical surface of polarized duodenal enterocytes is mediated by the divalent metal transporter, DMTi. A second transporter has been postulated to export iron across the basolateral surface to the circulation. Here we have used positional cloning to identify the gene responsible for the hypochromic anaemia of the zebrafish mutant weissherbst. The gene, ferroportin1, encodes a multiple-transmembrane domain protein, expressed in the yolk sac, that is a candidate for the elusive iron exporter. Zebrafish ferroportin1 is required for the transport of iron from maternally derived yolk stores to the circulation and functions as an iron exporter when expressed in Xenopus oocytes. Human Ferroportin1 is found at the basal surface of placental syncytiotrophoblasts, suggesting that it also transports iron from mother to embryo. Mammalian Ferroportin1 is expressed at the basolateral surface of duodenal enterocytes and could export cellular iron into the circulation. We propose that Ferroportin1 function may be perturbed in mammalian disorders of iron deficiency or overload.
Ferroportin (SLC40A1) is an iron transporter postulated to play roles in intestinal iron absorption and cellular iron release. Hepcidin, a regulatory peptide, binds to ferroportin and causes it to be internalized and degraded. If ferroportin is the major cellular iron exporter, ineffective hepcidin function could explain manifestations of human hemochromatosis disorders. To investigate this, we inactivated the murine ferroportin (Fpn) gene globally and selectively. Embryonic lethality of Fpn(null/null) animals indicated that ferroportin is essential early in development. Rescue of embryonic lethality through selective inactivation of ferroportin in the embryo proper suggested that ferroportin has an important function in the extraembryonic visceral endoderm. Ferroportin-deficient animals accumulated iron in enterocytes, macrophages, and hepatocytes, consistent with a key role for ferroportin in those cell types. Intestine-specific inactivation of ferroportin confirmed that it is critical for intestinal iron absorption. These observations define the major sites of ferroportin activity and give insight into hemochromatosis.
Dermatomyositis has been modeled as an autoimmune disease largely mediated by the adaptive immune system, including a local humorally mediated response with B and T helper cell muscle infiltration, antibody and complement-mediated injury of capillaries, and perifascicular atrophy of muscle fibers caused by ischemia. To further understand the pathophysiology of dermatomyositis, we used microarrays, computational methods, immunohistochemistry and electron microscopy to study muscle specimens from 67 patients, 54 with inflammatory myopathies, 14 with dermatomyositis. In dermatomyositis, genes induced by interferon-alpha/beta were highly overexpressed, and immunohistochemistry for the interferon-alpha/beta inducible protein MxA showed dense staining of perifascicular, and, sometimes all myofibers in 8/14 patients and on capillaries in 13/14 patients. Of 36 patients with other inflammatory myopathies, 1 patient had faint MxA staining of myofibers and 3 of capillaries. Plasmacytoid dendritic cells, potent CD4+ cellular sources of interferon-alpha, are present in substantial numbers in dermatomyositis and may account for most of the cells previously identified as T helper cells. In addition to an adaptive immune response, an innate immune response characterized by plasmacytoid dendritic cell infiltration and interferon-alpha/beta inducible gene and protein expression may be an important part of the pathogenesis of dermatomyositis, as it appears to be in systemic lupus erythematosus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.