Summary The origins and developmental mechanisms of coronary arteries are incompletely understood. We showed here by fate mapping, clonal analysis and immunohistochemistry that endocardial cells generate the endothelium of coronary arteries. Dye tracking, live imaging, and tissue transplantation also revealed that ventricular endocardial cells are not terminally differentiated; instead, they are angiogenic and form coronary endothelial networks. Myocardial Vegf-a or endocardial Vegfr-2 deletion inhibited coronary angiogenesis and arterial formation by ventricular endocardial cells. In contrast, lineage and knockout studies showed that endocardial cells make a small contribution to the coronary veins, the formation of which is independent of myocardial-to-endocardial Vegf signaling. Thus, contrary to the current view of a common source for the coronary vessels, our findings indicate that the coronary arteries and veins have distinct origins and are formed by different mechanisms. This information may help develop better cell therapies for coronary artery disease.
Human endogenous retrovirus K (HERV-K) is distinctive among the retroviruses in the human genome in that many HERV-K proviruses were inserted into the human germline after the human and chimpanzee lineages evolutionarily diverged [1, 2]. However, all full-length endogenous retroviruses described to date in humans are sufficiently old that all humans examined were homozygous for their presence [1]. Moreover, none are intact; all have lethal mutations [1, 3, 4]. Here, we describe the first endogenous retroviruses in humans for which both the full-length provirus and the preintegration site alleles are shown to be present in the human population today. One provirus, called HERV-K113, was present in about 30% of tested individuals, while a second, called HERV-K115, was found in about 15%. HERV-K113 has full-length open reading frames (ORFs) for all viral proteins and lacks any nonsynonymous substitutions in amino acid motifs that are well conserved among retroviruses. This is the first such endogenous retrovirus identified in humans. These findings indicate that HERV-K remained capable of reinfecting humans through very recent evolutionary times and that HERV-K113 is an excellent candidate for an endogenous retrovirus that is capable of reinfecting humans today.
Although the murine retrovirus SL3-3 is highly leukaemogenic, in both the structure of its genome and in its properties of replication in tissue culture it closely resembles the nonleukaemogenic retrovirus Akv (refs 3, 4). An earlier investigation of the properties of recombinant SL3-3-Akv viruses localized the major determinant of leukaemogenicity outside the env gene, in a region of the viral genome that includes the gag gene and the noncoding long terminal repeat (LTR). To localize the determinant of SL3-3's leukaemogenicity more precisely we have now construced a recombinant provirus containing the LTR of SL3-3 and the coding region of Akv. The leukaemogenicity of these recombinants demonstrates that the determinant of leukaemogenicity lies within the SL3-3 LTR. Nucleotide sequencing of the LTRs of SL3-3 and Akv shows that they differ by a set of changes in the region thought to contain a transcriptional enhancer element. We suggest that enhancer region sequences are the major determinants of leukaemogenicity in these viruses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.