The extent of damage following spinal cord injury (SCI) can be reduced by various neuroprotective regimens that include maintaining levels of cyclic adenosine monophosphate (cyclic AMP), via administration of the phosphodiesterase 4 (PDE4) inhibitor Rolipram. The current study sought to determine the optimal neuroprotective dose, route and therapeutic window for Rolipram following contusive SCI in rat as well as its prominent PDE target and putative mechanism of protection. Rolipram or vehicle control (10% ethanol) was given subcutaneously (s.c.) daily for 2 wk post-injury (PI) after which the preservation of oligodendrocytes, neurons and central myelinated axons was stereologically assessed. Doses of 0.1 mg/kg to 1.0 mg/kg (given at 1 h PI) increased neuronal survival; 0.5 mg to 1.0 mg/kg protected oligodendrocytes and 1.0 mg/kg produced optimal preservation of central myelinated axons. Ethanol also demonstrated significant neuronal and oligo-protection; though the preservation provided was significantly less than Rolipram. Subsequent use of this optimal Rolipram dose, 1.0 mg/kg, via different routes (i.v., s.c. or oral, 1 h PI), demonstrated that i.v. administration produced the most significant and consistent cyto- and axo- protection, although all routes were effective. Examination of the therapeutic window for i.v. Rolipram (1.0 mg/kg), when initiated between 1 and 48 h after SCI, revealed maximal neuroprotection at 2 h post-SCI, although the protective efficacy of Rolipram could still be observed when administration was delayed for up to 48 h PI. Importantly, use of the optimal Rolipram regimen significantly improved locomotor function after SCI as measured by the BBB score. Lastly we show SCI-induced changes in PDE4A, B and D expression and phosphorylation as well as cytokine expression and immune cell infiltration. We demonstrate that Rolipram abrogates SCI-induced PDE4B1 and PDE4A5 production, PDE4A5 phosphorylation, MCP-1 expression and immune cell infiltration, while preventing post-injury reductions in IL-10. This work supports the use of Rolipram as an acute neuroprotectant following SCI and defines an optimal administration protocol and target for its therapeutic application.
Following spinal cord injury (SCI), both an inhibitory environment and lack of intrinsic growth capacity impede axonal regeneration. In a previous study, prevention of cyclic adenosine monophosphate (AMP) hydrolysis by the phosphodiesterase-4 inhibitor rolipram, in combination with Schwann cell (SC) grafts, promoted significant supraspinal and proprioceptive fiber growth and/or sparing and improved locomotion. In another study, transplanted SCs transduced to generate a bifunctional neurotrophin (D15A) led to significant increases in graft SCs and axons, including supraspinal and myelinated axons. Here we studied the growth and myelination of local and supraspinal axons and functional outcome following the combination of rolipram administration and neurotrophin-transduced SC implantation after SCI. Rolipram was administered subcutaneously for 4 weeks immediately after contusion at vertebral T8 (25.0-mm weight drop, MASCIS impactor). GFP or GFP-D15A-transduced SCs were injected into the injury epicenter 1 week after SCI. GFP-D15A SC grafts and GFP SC grafts with rolipram contained significantly more serotonergic fibers compared to GFP SCs. SC myelinated axons were increased significantly in GFP SC with rolipram-treated animals compared to animals receiving SCI alone. Rolipram administered with either GFP or GFP-D15A SCs significantly increased numbers of brain stem-derived axons below the lesion/implant area and improved hindlimb function. Compared to the single treatments, the combination led to the largest SC grafts, the highest numbers of serotonergic fibers in the grafts, and increased numbers of axons from the reticular formation below the lesion/implant area and provided the greatest improvement in hindlimb function. These findings demonstrate the therapeutic potential for a combination therapy involving the maintenance of cyclic AMP levels and neurotrophin-transduced SCs to repair the subacutely injured spinal cord.
Mechanical trauma to the spinal cord is often accompanied by irreversible tissue damage, limited endogenous repair and permanent loss of motor, sensory and autonomic function. The implantation of exogenous cells or the stimulation of endogenous cells, to repopulate and replace or to provide a conducive environment for repair, offers a promising therapeutic direction for overcoming the multitude of obstacles facing successful recovery from spinal cord injury. Although relatively new to the scene of cell based therapies for reparative medicine, stem cells and their progenitors have been labeled as the 'cell of the future' for revolutionizing the treatment of CNS injury and neurodegenerative disorders. The following review examines the different types of stem cells and their progenitors, their utility in experimental models of spinal cord injury and explores the outstanding issues that still need to be addressed before they move towards clinical implementation.
Focused cardiac ultrasound (FoCUS) has become a valuable tool to assess unexplained hypotension in critically ill patients. Due to increasing availability of transthoracic echocardiography (TTE) equipment in the operating room, there is a widespread interest in its usefulness for intraoperative diagnosis of hypotension as an alternative to transesophageal echocardiography (TEE). The objective of this systematic review is to evaluate the utility of intraoperative FoCUS to assess patients experiencing unexplained hypotension while undergoing noncardiac surgery. We performed a systematic literature search of multiple publication databases for studies that evaluated the utility of intraoperative FoCUS for assessment and management of unexplained hypotension in patients undergoing noncardiac surgery, including retro- and prospective clinical studies. A summary of the study findings, study quality, and assessment of level of evidence is presented. We identified 2227 unique articles from the literature search, of which 27 were potentially relevant, and 9 were included in this review. The number of patients pooled from these studies was 255, of whom 228 had intraoperative diagnoses with the aid of intraoperative FoCUS. The level of evidence of all studies included was very low according to the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) guidelines. This systematic review has demonstrated that FoCUS may be a useful, noninvasive method to differentiate causes of intraoperative hypotension and guide correcting interventions, although the quality of evidence is very low. Further prospective high-quality studies are needed to investigate whether intraoperative FoCUS has a diagnostic utility that is associated with improved outcomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.