This document expands our structural knowledge of topological modular forms TMF in two directions: the first, by extending the functoriality inherent to the definition of TMF, and the second, being tools to calculate the effect that endomorphisms of TMF have on homotopy groups. These structural statements allow us to lift classical operations on modular forms, such as Adams operations, Hecke operators, and Atkin-Lehner involutions, to stable operations on TMF. Some novel applications of these operations are then found, including a derivation of some congruences of Ramanujan in a purely homotopy theoretic manner, improvements upon known bounds of Maeda's conjecture, as well as some applications in homotopy theory. These techniques serve as teasers for the potential of these operations.Dit document breidt onze structurele kennis van topologische modulaire vormen TMF in twee richtingen uit: de eerste, door de functoraliteit uit te breiden die inherent is aan de definitie van TMF, en de tweede, door hulpmiddelen te zijn om het effect te berekenen dat endomorfismen van TMF hebben op homotopiegroepen. Deze structurele verklaringen laten toe om klassieke operaties op modulaire vormen, zoals de operaties van Adams, de operatoren van Hecke en de involuties van Atkin en Lehner, op te heffen naar stabiele operaties op TMF. Vervolgens worden enkele nieuwe toepassingen van deze operaties gevonden, waaronder een afleiding van enkele congruenties van Ramanujan op een zuiver homotopie-theoretische manier, verbeteringen van gekende limieten van Maeda's vermoeden, alsook enkele toepassingen in de homotopie theorie. Deze technieken dienen als teasers voor het potentieel van deze operaties. This thesis is a combination of [Dav20], [Dav21a], [Dav21b], and [Dav22], with some elaborations and added context.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.