Coronavirus COVID-19 spreads through the population mostly based on social contact. To gauge the potential for widespread contagion, to cope with associated uncertainty and to inform its mitigation, more accurate and robust modelling is centrally important for policy making.We provide a flexible modelling approach that increases the accuracy with which insights can be made. We use this to analyse different scenarios relevant to the COVID-19 situation in the UK. We present a stochastic model that captures the inherently probabilistic nature of contagion between population members. The computational nature of our model means that spatial constraints (e.g., communities and regions), the susceptibility of different age groups and other factors such as medical pre-histories can be incorporated with ease. We analyse different possible scenarios of the COVID-19 situation in the UK. Our model is robust to small changes in the parameters and is flexible in being able to deal with different scenarios.This approach goes beyond the convention of representing the spread of an epidemic through a fixed cycle of susceptibility, infection and recovery (SIR). It is important to emphasise that standard SIR-type models, unlike our model, are not flexible enough and are also not stochastic and hence should be used with extreme caution. Our model allows both heterogeneity and inherent uncertainty to be incorporated. Due to the scarcity of verified data, we draw insights by calibrating our model using parameters from other relevant sources, including agreement on average (mean field) with parameters in SIR-based models.We use the model to assess parameter sensitivity for a number of key variables that characterise the COVID-19 epidemic. We also test several control parameters with respect to their influence on the severity of the outbreak. Our analysis shows that due to inclusion of spatial heterogeneity in the population and the asynchronous timing of the epidemic across different areas, the severity of the epidemic might be lower than expected from other models.We find that one of the most crucial control parameters that may significantly reduce the severity of the epidemic is the degree of separation of vulnerable people and people aged 70 years and over, but note also that isolation of other groups has an effect on the severity of the epidemic. It is important to remember that models are there to advise and not to replace reality, and that any action should be coordinated and approved by public health experts with experience in dealing with epidemics.The computational approach makes it possible for further extensive scenario-based analysis to be undertaken. This and a comprehensive study of sensitivity of the model to different parameters defining COVID-19 and its development will be the subject of our forthcoming paper. In that paper, we shall also extend the model where we will consider different probabilistic scenarios for infected people with mild and severe cases.
In this paper we study approximations for the boundary crossing probabilities of moving sums of i.i.d. normal random variables. We approximate a discrete time problem with a continuous time problem allowing us to apply established theory for stationary Gaussian processes. By then subsequently correcting approximations for discrete time, we show that the developed approximations are very accurate even for a small window length. Also, they have high accuracy when the original r.v. are not exactly normal and when the weights in the moving window are not all equal. We then provide accurate and simple approximations for ARL, the average run length until crossing the boundary.
We model further development of the COVID-19 epidemic in the UK given the current data and assuming different scenarios of handling the epidemic. In this research, we further extend the stochastic model suggested in [1] and incorporate in it all available to us knowledge about parameters characterising the behaviour of the virus and the illness induced by it. The models we use are flexible, comprehensive, fast to run and allow us to incorporate the following:• time-dependent strategies of handling the epidemic;• spatial heterogeneity of the population and heterogeneity of development of epidemic in different areas;• special characteristics of particular groups of people, especially people with specific medical prehistories and elderly.• the epidemic should almost completely finish in July, no global second wave should be expected, except areas where the first wave is almost absent, see Section 3.4. The modelThe main differences between the model we use in this work and the model of [1] are the following:• in the current model, we use the split into mild and severe cases of illness, see Figure 1;
In this paper, we derive explicit formulas for the first-passage probabilities of the process S(t) = W(t) − W(t + 1), where W(t) is the Brownian motion, for linear and piece-wise linear barriers on arbitrary intervals [0,T]. Previously, explicit formulas for the first-passage probabilities of this process were known only for the cases of a constant barrier or T ≤ 1. The first-passage probabilities results are used to derive explicit formulas for the power of a familiar test for change-point detection in the Wiener process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.