We investigate empirical scaling relations between the thermal Sunyaev-Zeldovich effect (SZE) and cluster mass in simulated clusters of galaxies. The simulated clusters have been compiled from four different samples that differ only in their assumed baryonic physics. We show that the strength of the thermal SZE integrated over a significant fraction of the virialized region of the clusters is relatively insensitive to the detailed heating and cooling processes in the cores of clusters, by demonstrating that the derived scaling relations are nearly identical among the four cluster samples considered. For our synthetic images, the central Comptonization parameter shows significant boosting during transient merging events, but the integrated SZE appears to be relatively insensitive to these events. Most importantly, the integrated SZE closely tracks the underlying cluster mass. Observations through the thermal SZE allow a strikingly accurate mass estimation from relatively simple measurements that do not require either parametric modeling or geometric deprojection and thus avoid assumptions regarding the physics of the intracluster medium or the symmetry of the cluster. This result offers significant promise for precision cosmology using clusters of galaxies.
We present new results characterizing cosmological shocks within adaptive mesh refinement N-Body/hydrodynamic simulations that are used to predict non-thermal components of large-scale structure. This represents the first study of shocks using adaptive mesh refinement. We propose a modified algorithm for finding shocks from those used on unigrid simulations that reduces the shock frequency of low Mach number shocks by a factor of ∼ 3. We then apply our new technique to a large, (512 M pc/h) 3 , cosmological volume and study the shock Mach number (M) distribution as a function of pre-shock temperature, density, and redshift. Because of the large volume of the simulation, we have superb statistics that results from having thousands of galaxy clusters. We find that the Mach number evolution can be interpreted as a method to visualize large-scale structure formation. Shocks with M < 5 typically trace mergers and complex flows, while 5 < M < 20 and M > 20 generally follow accretion onto filaments and galaxy clusters, respectively. By applying results from nonlinear diffusive shock acceleration models using the first-order Fermi process, we calculate the amount of kinetic energy that is converted into cosmic ray protons. The acceleration of cosmic ray protons is large enough that in order to use galaxy clusters as cosmological probes, the dynamic response of the gas to the cosmic rays must be included in future numerical simulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.