Abstract:We present an extension to the widely used spectral angle metric, calculating an azimuthal angle around a reference vector. We demonstrate that it provides additional information, thus improving the classification ability of the spectral angle.
Sentinel Lymph Node Biopsy (SLNB) is an increasingly standard procedure to help oncologists accurately stage cancers. It is performed as an alternative to full axillary lymph node dissection in breast cancer patients, reducing the risk of longterm health problems associated with lymph node removal. Intraoperative analysis is currently performed using touchprint cytology, which can introduce significant delay into the procedure. Spectral imaging is forming a multi-plane image where reflected intensities from a number of spectral bands are recorded at each pixel in the spatial plane. We investigate the possibility of using spectral imaging to assess sentinel lymph nodes of breast cancer patients with a view to eventually developing an optical technique that could significantly reduce the time required to perform this procedure. We investigate previously reported spectra of normal and metastatic tissue in the visible and near infrared region, using them as the basis of dummy spectral images. We analyse these images using the spectral angle map (SAM), a tool routinely used in other fields where spectral imaging is prevalent. We simulate random noise in these images in order to determine whether the SAM can discriminate between normal and metastatic pixels as the quality of the images deteriorates. We show that even in cases where noise levels are up to 20% of the maximum signal, the spectral angle map can distinguish healthy pixels from metastatic. We believe that this makes spectral imaging a good candidate for further study in the development of an optical SLNB.
Since the 1960s, digital preservation has transformed from a secondary activity at a select few cultural heritage organizations to a vital international effort with its own best practices, standards, and community. This keynote presentation and paper presents an overview of the changing
scope of digital preservation, issues, and strategies for digital preservation in the cultural heritage community.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.