While searching for alternative reading-frame peptides encoded by influenza A virus that are recognized by CD8+ T cells, we found an abundant immunogenic peptide encoded by the +1 reading frame of PB1. This peptide derives from a novel conserved 87-residue protein, PB1-F2, which has several unusual features compared with other influenza gene products in addition to its mode of translation. These include its absence from some animal (particularly swine) influenza virus isolates, variable expression in individual infected cells, rapid proteasome-dependent degradation and mitochondrial localization. Exposure of cells to a synthetic version of PB1-F2 induces apoptosis, and influenza viruses with targeted mutations that interfere with PB1-F2 expression induce less extensive apoptosis in human monocytic cells than those with intact PB1-F2. We propose that PB1-F2 functions to kill host immune cells responding to influenza virus infection.
MHC class I molecules function to present peptides eight to ten residues long to the immune system. These peptides originate primarily from a cytosolic pool of proteins through the actions of proteasomes, and are transported into the endoplasmic reticulum, where they assemble with nascent class I molecules. Most peptides are generated from proteins that are apparently metabolically stable. To explain this, we previously proposed that peptides arise from proteasomal degradation of defective ribosomal products (DRiPs). DRiPs are polypeptides that never attain native structure owing to errors in translation or post-translational processes necessary for proper protein folding. Here we show, first, that DRiPs constitute upwards of 30% of newly synthesized proteins as determined in a variety of cell types; second, that at least some DRiPs represent ubiquitinated proteins; and last, that ubiquitinated DRiPs are formed from human immunodeficiency virus Gag polyprotein, a long-lived viral protein that serves as a source of antigenic peptides.
Of the many thousands of peptides encoded by a complex foreign antigen that can potentially be presented to CD8+ T cells (TCD8+), only a small fraction induce measurable responses in association with any given major histocompatibility complex class I allele. To design vaccines that elicit optimal TCD8+ responses, a thorough understanding of this phenomenon, known as immunodominance, is imperative. Here we review recent progress in unraveling the molecular and cellular basis for immunodominance. Of foremost importance is peptide binding to class I molecules; only approximately 1/200 of potential determinants bind at greater than the threshold affinity (Kd > 500 nM) associated with immunogenicity. Limitations in the TCD8+ repertoire render approximately half of these peptides nonimmunogenic, and inefficient antigen processing further thins the ranks by approximately four fifths. As a result, only approximately 1/2000 of the peptides in a foreign antigen expressed by an appropriate antigen presenting cell achieve immunodominant status with a given class I allele. A roughly equal fraction of peptides have subdominant status, i.e. they induce weak-to-nondetectable primary TCD8+ responses in the context of their natural antigen. Subdominant determinants may be expressed at or above levels of immunodominant determinants, at least on antigen presenting cells in vitro. The immunogenicity of subdominant determinants is often limited by immunodomination: suppression mediated by TCD8+ specific for immunodominant determinants. Immunodomination is a central feature of TCD8+ responses, as it even occurs among clones responding to the same immunodominant determinant. Little is known about how immunodominant and subdominant determinants are distinguished by the TCD8+ repertoire, or how (and why) immunodomination occurs, but new tools are available to address these questions.
Rare major histocompatibility complex (MHC) class I-like CD1-specific T cells have been isolated from human blood, but it has not been determined whether these clones are part of a defined subset of CD1-specific T cells selected during T cell development, or whether their recognition of CD1 is a fortuitous cross-reaction. In mice, an entire subset of alpha beta thymocytes with a unique phenotype was found to be CD1-specific. This particular subset, and its human counterpart, provide evidence that CD1 has a general role in selecting and interacting with specialized alpha beta T cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.