In the mammalian CNS, glial cells repel axons during development and inhibit axon regeneration after injury. It is unknown whether the same repulsive axon guidance molecules expressed by glia and their precursors during development also play a role in inhibiting regeneration in the injured CNS. Here we investigate whether optic nerve glial cells express semaphorin family members and, if so, whether these semaphorins inhibit axon growth by retinal ganglion cells (RGCs). We show that each optic nerve glial cell type, astrocytes, oligodendrocytes, and their precursor cells, expressed a distinct complement of semaphorins. One of these, sema5A, was expressed only by purified oligodendrocytes and their precursors, but not by astrocytes, and was present in both normal and axotomized optic nerve but not in peripheral nerves. Sema5A induced collapse of RGC growth cones and inhibited RGC axon growth when presented as a substrate in vitro. To determine whether sema5A might contribute to inhibition of axon growth after injury, we studied the ability of RGCs to extend axons when cultured on postnatal day (P) 4, P8, and adult optic nerve explants and found that axon growth was strongly inhibited. Blocking sema5A using a neutralizing antibody significantly increased RGC axon growth on these optic nerve explants. These data support the hypothesis that sema5A expression by oligodendrocyte lineage cells contributes to the glial cues that inhibit CNS regeneration.
Neurons throughout the brain show spike activity that is temporally correlated to that expressed by their neighbors, yet the generating mechanism(s) remains unclear. In the retina, ganglion cells (GCs) show robust, concerted spiking that shapes the information transmitted to central targets. Here we report the synaptic circuits responsible for generating the different types of concerted spiking of GC neighbors in the mouse retina. The most precise concerted spiking was generated by reciprocal electrical coupling of GC neighbors via gap junctions, whereas indirect electrical coupling to a common cohort of amacrine cells generated the correlated activity with medium precision. In contrast, the correlated spiking with the lowest temporal precision was produced by shared synaptic inputs carrying photoreceptor noise. Overall, our results demonstrate that different synaptic circuits generate the discrete types of GC correlated activity. Moreover, our findings expand our understanding of the roles of gap junctions in the retina, showing that they are essential for generating all forms of concerted GC activity transmitted to central brain targets.
Here we describe methods for acute purification of retinal ganglion cells (RGCs) from rodent retina by immunopanning, followed by culture in serum-free medium. Though the method was initially established and verified with rats, we have included modifications for the purification of mouse RGCs. This protocol is written for isolation of cells from one litter of pups. All of the volumes and numbers of panning plates should be scaled according to the number of litters used, particularly for rat RGCs.
To what extent do postmitotic neurons regulate gene expression during development or after injury? We took advantage of our ability to highly purify retinal ganglion cells (RGCs) to profile their pattern of gene expression at 13 ages from embryonic day 17 through postnatal day 21. We found that a large proportion of RGC genes are regulated dramatically throughout their postmitotic development, although the genes regulated through development in vivo generally are not regulated similarly by RGCs allowed to age in vitro. Interestingly, we found that genes regulated by developing RGCs are not generally correlated with genes regulated in RGCs stimulated to regenerate their axons. We unexpectedly found three genes associated with glaucoma, optineurin, cochlin, and CYP1B1 (cytochrome P450, family 1, subfamily B, polypeptide 1), previously thought to be primarily expressed in the trabecular meshwork, which are highly expressed by RGCs and regulated through their development. We also identified several other RGC genes that are encoded by loci linked to glaucoma. The expression of glaucoma-linked genes by RGCs suggests that, at least in some cases, RGCs may be directly involved in glaucoma pathogenesis rather than indirectly involved in response to increased intraocular pressure. Consistent with this hypothesis, we found that CYP1B1 overexpression potentiates RGC survival.
The expression of the mutant Wallerian degeneration slow (WldS) protein significantly delays axonal degeneration from various nerve injuries and in multiple species; however, the mechanism for its axonal protective property remains unclear. Although WldS is localized predominantly in the nucleus, it also is present in a smaller axonal pool, leading to conflicting models to account for the WldS fraction necessary for axonal protection. To identify where WldS activity is required to delay axonal degeneration, we adopted a method to alter the temporal expression of WldS protein in neurons by chemically regulating its protein stability. We demonstrate that continuous WldS activity in the axonal compartment is both necessary and sufficient to delay axonal degeneration. Furthermore, by specifically increasing axonal WldS expression postaxotomy, we reveal a critical period of 4-5 h postinjury during which the course of Wallerian axonal degeneration can be halted. Finally, we show that NAD + , the metabolite of WldS/nicotinamide mononucleotide adenylyltransferase enzymatic activity, is sufficient and specific to confer WldS-like axon protection and is a likely molecular mediator of WldS axon protection. The results delineate a therapeutic window in which the course of Wallerian degeneration can be delayed even after injures have occurred and help narrow the molecular targets of WldS activity to events within the axonal compartment.xon degeneration is a characteristic event in many neurodegenerative conditions including stroke, glaucoma, and motor neuropathies. Remarkably, expression of the Wallerian degeneration slow (WldS) transgene delays nerve degeneration in these events, and the protection is conserved across many species, including rats (1), Drosophila (2, 3), and even in human neurons (4). Thus, identifying the molecular components of the degeneration pathway with which WldS interferes provides a window of opportunity to understand how axons are normally lost after injury.The WldS mutation results in the formation of a chimeric gene product consisting of the N-terminal 70 amino acids of ubiquitination factor 4B (Ube4B), which contains no enzymatic activity, and the full functional sequence of a NAD + synthetic enzyme, nicotinamide mononucleotide adenylyltransferase (Nmnat1) (5). The Ube4B portion in WldS contains a binding site for valosin-containing protein (VCP) (6), a cytoplasmic protein with diverse cellular functions (7). Both this VCP-binding domain and the enzymatic activity of Nmnat1 are required for WldS-mediated axon protection (8, 9). Although the WldS protein is localized predominantly in the nucleus because of the endogenous nuclear localization of Nmnat1, trace amounts of WldS protein also have been identified in extranuclear compartments in the axoplasm and in axonal organelles including the mitochondria and phagosomes (10, 11), suggesting that the N-terminal Ube4B region of WldS partially redistributes the nuclear Nmnat1 to the axon.Despite the remarkable phenotype, little is known regarding the m...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.