This paper presents a novel CFD-driven machine learning framework to develop Reynolds-averaged Navier-Stokes (RANS) models. For the CFD-driven training, the gene expression programming (GEP) method (Weatheritt & Sandberg, J. Comput. Phys., 325, 22-37 (2016)) uses RANS calculations in an integrated way to evaluate the fitness of candidate models. The resulting model, which is the one providing the most accurate CFD results at the end of the training process, is thus expected to show good performance in RANS calculations. To demonstrate the potential of this new approach, the CFD-driven machine learning is applied to develop a model for improved prediction of wake mixing in turbomachines. A new model is trained based on a high-pressure turbine training case with particular physical features. The developed model is shown to have a more compact functional form than models trained without CFD assistance. Furthermore, the trained model has been evaluated a posteriori for the training case and three additional test cases with different physical flow features, and the predicted wake mixing profiles are significantly improved in all cases. With the present framework, the model equation is explicitly given and available for analysis, thus it could be deduced that the enhanced wake prediction is due to the extra diffusion introduced by the CFD-driven model.
The validity of the Boussinesq approximation in the wake behind a high-pressure turbine blade is explored. We probe the mathematical assumptions of such a relationship by employing a least-squares technique. Next, we use an evolutionary algorithm to modify the anisotropy tensor a priori using highly resolved LES data. In the latter case we build a non-linear stress-strain relationship. Results show that the standard eddy-viscosity assumption underpredicts turbulent diffusion and is theoretically invalid. By increasing the coefficient of the linear term, the farwake prediction shows minor improvement. By using additional non-linear terms in the stress-strain coupling relationship, created by the evolutionary algorithm, the near-wake can also be improved upon. Terms created by the algorithm are scrutinized and the discussion is closed by suggesting a tentative non-linear expression for the Reynolds stress, suitable for the wake behind a high-pressure turbine blade.
Machine learning was applied to large-eddy simulation (LES) data to develop nonlinear turbulence stress and heat flux closures with increased prediction accuracy for trailing-edge cooling slot cases. The LES data were generated for a thick and a thin trailing-edge slot and shown to agree well with experimental data, thus providing suitable training data for model development. A gene expression programming (GEP) based algorithm was used to symbolically regress novel nonlinear explicit algebraic stress models and heat-flux closures based on either the gradient diffusion or the generalized gradient diffusion approaches. Steady Reynolds-averaged Navier–Stokes (RANS) calculations were then conducted with the new explicit algebraic stress models. The best overall agreement with LES data was found when selecting the near wall region, where high levels of anisotropy exist, as training region, and using the mean squared error of the anisotropy tensor as cost function. For the thin lip geometry, the adiabatic wall effectiveness was predicted in good agreement with the LES and experimental data when combining the GEP-trained model with the standard eddy-diffusivity model. Crucially, the same model combination also produced significant improvement in the predictive accuracy of adiabatic wall effectiveness for different blowing ratios (BRs), despite not having seen those in the training process. For the thick lip case, the match with reference values deteriorated due to the presence of large-scale, relative to slot height, vortex shedding. A GEP-trained scalar flux model, in conjunction with a trained RANS model, was found to significantly improve the prediction of the adiabatic wall effectiveness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.