INTRODUCTION: A torque-rotation model of the bone-screwing process has been proposed. Identification of model parameters using recorded data could potentially be used to determine the material properties of bone. These properties can then be used to recommend tightening torques to avoid over or under-tightening of bone screws. This paper improves an existing model to formulate it in terms of material properties and remove some assumptions. METHOD: The modelling methodology considers a critical torque, which is required to overcome friction and advance the screw into the bone. Below this torque the screw may rotate with elastic deformation of the bone tissue, and above this the screw moves relative to the bone, and the speed is governed by a speed-torque model of the operator’s hand. The model is formulated in terms of elastic modulus, ultimite tensile strength, and frictional coefficient of the bone and the geometry of the screw and hole. RESULTS: The model output shows the speed decreasing and torque increasing as the screw advances into the bone, due to increasing resistance. The general shape of the torque and speed follow the input effort. Compared with the existing model, this model removes the assumption of viscous friction, models the increase in friction as the screw advances into the bone, and is directly in terms of the bone material properties. CONCLUSION: The model presented makes significant improvements on the existing model. However it is intended for use in parameter identification, which was not evaluated here. Further simulation and experimental validation is required to establish the accuracy and fitness of this model for identifying bone material properties.
Correctly torquing bone screws is an important factor in achieving positive patient outcomes during orthopaedic surgery. A torque-limiting smart screwdriver concept has been proposed, and ongoing work is being undertaken to model the screwing process and allow the concept to work. These models require experimental validation, so a test rig was developed. The magnetostrictive torque sensor in this test rig was affected by magnetic parts of the test rig, which offset the zero-torque point; this raised concerns over the effects on linearity, which were tested here. The torque sensor was tested against a non-magnetostrictive reference under varying external magnetic conditions. While the magnetic field offset the torque, there was no notable change in linearity under the conditions tested, and the linearity was always within the datasheet specifications. Hence, we conclude that in the context of this test rig, there were no negative effects on linearity, although under higher loading or stronger magnetic conditions, this may not hold.
Bone screws are used in many orthopaedic procedures. For low-density cancellous and osteoporotic bone, the torque margin for bone screw insertion can be low; over-tightening will strip the threads, while under-tightening may allow screw loosening over time. A model-based system of automatic individualised torque regulation has been proposed, however current efforts assume speed-independence. This publication addresses the lack of knowledge on the speed dependance of insertion torque. Therefore, a bone screw was inserted at various speeds between 2.5 and 25 rpm into 4 different densities of polyurethane foam synthetic bone. A statistically significant upwards trend was found for all materials (p < 0.05). These findings can be used to correct identified bone strength values from previous models, although investigating the physical cause may improve correction schemes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.