This paper will solve one of the fractional mathematical physics models, a one-dimensional time-fractional differential equation, by utilizing the second-order quarter-sweep finite-difference scheme and the preconditioned accelerated over-relaxation method. The proposed numerical method offers an efficient solution to the time-fractional differential equation by applying the computational complexity reduction approach by the quarter-sweep technique. The finite-difference approximation equation will be formulated based on the Caputo’s time-fractional derivative and quarter-sweep central difference in space. The developed approximation equation generates a linear system on a large scale and has sparse coefficients. With the quarter-sweep technique and the preconditioned iterative method, computing the time-fractional differential equation solutions can be more efficient in terms of the number of iterations and computation time. The quarter-sweep computes a quarter of the total mesh points using the preconditioned iterative method while maintaining the solutions’ accuracy. A numerical example will demonstrate the efficiency of the proposed quarter-sweep preconditioned accelerated over-relaxation method against the half-sweep preconditioned accelerated over-relaxation, and the full-sweep preconditioned accelerated over-relaxation methods. The numerical finding showed that the quarter-sweep finite difference scheme and preconditioned accelerated over-relaxation method can serve as an efficient numerical method to solve fractional differential equations.
The numerical method can be a good choice in solving nonlinear partial differential equations (PDEs) due to the difficulty in finding the analytical solution. Porous medium equation (PME) is one of the nonlinear PDEs which exists in many realistic problems. This paper proposes a four-point Newton-EGMSOR (4-Newton-EGMSOR) iterative method in solving 1D nonlinear PMEs. The reliability of the 4-Newton-EGMSOR iterative method in computing approximate solutions for several selected PME problems is shown with comparison to 4-Newton-EGSOR, 4-Newton-EG and Newton-Gauss-Seidel methods. Numerical results showed that the proposed method is superior in terms of the number of iterations and computational time compared to the other three tested iterative methods.
Research into the recent developments for solving fractional mathematical equations requires accurate and efficient numerical methods. Although many numerical methods based on Caputo’s fractional derivative have been proposed to solve fractional mathematical equations, the efficiency of obtaining solutions using these methods when dealing with a large matrix requires further study. The matrix size influences the accuracy of the solution. Therefore, this paper proposes a quarter-sweep finite difference scheme with a preconditioned relaxation-based approximation to efficiently solve a large matrix, which is based on the establishment of a linear system for a fractional mathematical equation. The paper presents the formulation of the quarter-sweep finite difference scheme that is used to approximate the selected fractional mathematical equation. Then, the derivation of a preconditioned relaxation method based on a quarter-sweep scheme is discussed. The design of a C++ algorithm of the proposed quarter-sweep preconditioned relaxation method is shown and, finally, efficiency analysis comparing the proposed method with several tested methods is presented. The contributions of this paper are the presentation of a new preconditioned matrix to restructure the developed linear system, and the derivation of an efficient preconditioned relaxation iterative method for solving a fractional mathematical equation. By simulating the solutions of time-fractional diffusion problems with the proposed numerical method, the study found that computing solutions using the quarter-sweep preconditioned relaxation method is more efficient than using the tested methods. The proposed numerical method is able to solve the selected problems with fewer iterations and a faster execution time than the tested existing methods. The efficiency of the methods was evaluated using different matrix sizes. Thus, the combination of a quarter-sweep finite difference method, Caputo’s time-fractional derivative, and the preconditioned successive over-relaxation method showed good potential for solving different types of fractional mathematical equations, and provides a future direction for this field of research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.