In cancer cells metabolic changes and mitochondrial morphology are coupled. It is known that the cytoskeleton and molecular motors are directly involved in regulating mitochondrial morphology. Here we show that myosin-Va, an actin-based molecular motor, is required for the malignant properties of melanoma cells and localizes to mitochondria in these cells. Knockdown of myosin-Va increases cellular respiration rates and ROS production and decreases glucose uptake and lactate secretion. In addition, knockdown of myosin-Va results in reduced mitochondrial fission and correspondingly elongated mitochondria. We show that myosin-Va interacts with the mitochondrial outer membrane protein Spire1C, an actin-regulatory protein implicated in mitochondrial fission, and that Spire1C recruits myosin-Va to mitochondria. Finally, we show that during mitochondrial fission myosin-Va localization to mitochondria increases, and that myosin-Va localizes to mitochondrial fission sites immediately adjacent to Drp1 punctae. We conclude that myosin-Va facilitates mitochondrial fission. These data implicate myosin-Va as a target for the Warburg effect in melanoma cells.
Background: Freezing human biopsies is common in clinical practice for storage.However, this technique disrupts mitochondrial membranes, hampering further analyses of respiratory function. To contribute to laboratorial diagnosis of mitochondrial diseases, this study sought to develop a respirometry approach using O2k (Oroboros Ins.) to measure the whole electron transport chain (ETC) activity in homogenates of frozen skeletal muscle biopsies. Patients and Methods: We enrolled 16 patients submitted to muscle biopsy in the process of routine diagnostic investigation: four with mitochondrial disease and severe mitochondrial dysfunction; seven with exercise intolerance and multiple deletions of mitochondrial DNA, presenting mild to moderate mitochondrial dysfunction; five without mitochondrial disease, as controls. Whole homogenates of muscle fragments were prepared using grinder-type equipment. O 2 consumption rates were normalized using citrate synthase activity. Results: Transmission electron microscopy confirmed mitochondrial membrane discontinuation, indicating increased permeability of mitochondrial membranes in homogenates from frozen biopsies. O 2 consumption rates in the presence of acetyl-CoA lead to maximum respiratory rates sensitive to rotenone, malonate and antimycin. This protocol of acetyl-CoA-driven respiration (ACoAR), applied in whole homogenates of frozen muscle, was sensitive enough to identify ETC abnormality, even in patients with mild to moderate mitochondrial dysfunction. We demonstrated adequate repeatability of ACoAR and found significant correlation between O 2 consumption rates and enzyme activity assays of individual ETC complexes. Conclusions: We present preliminary data on a simple, low cost and reliable procedure to measure respiratory function in whole homogenates of frozen skeletal muscle biopsies, contributing to diagnosis of mitochondrial diseases in humans. K E Y W O R D Sacetyl-CoA-driven respiration, electron transport chain, frozen skeletal muscle biopsy, highresolution respirometry, mitochondrial diseases, oxygen consumption rate 2 of 10 | ZUCCOLOTTO-DOS-REIS ET aL.How to cite this article: Zuccolotto-dos-Reis FH, Escarso SHA, Araujo JS, Espreafico EM, Alberici LC, Sobreira CFDR. Acetyl-CoA-driven respiration in frozen muscle contributes to the diagnosis of mitochondrial disease.
Myosin Va (MyoVa) is an actin-based molecular motor that plays key roles in the final stages of secretory pathways, including neurotransmitter release. Several studies have addressed how MyoVa coordinates the trafficking of secretory vesicles, but why this molecular motor is found in exosomes is still unclear. In this work, using a yeast two-hybrid screening system, we identified the direct interaction between the globular tail domain (GTD) of MyoVa and four protein components of exosomes: the WD repeat-containing protein 48 (WDR48), the cold shock domain-containing protein E1 (CSDE1), the tandem C2 domain-containing protein 1 (TC2N), and the enzyme spermine synthase (SMS). The interaction between the GTD of MyoVa and SMS was further validated in vitro and displayed a Kd in the low micromolar range (3.5 ± 0.5 µM). SMS localized together with MyoVa in cytoplasmic vesicles of breast cancer MCF-7 and neuroblastoma SH-SY5Y cell lines, known to produce exosomes. Moreover, MYO5A knockdown decreased the expression of SMS gene and rendered the distribution of SMS protein diffuse, supporting a role for MyoVa in SMS expression and targeting.
Orphan nuclear receptor 4A2 (NR4A2/Nurr1) is a constitutively active transcription factor with potential roles in the onset and progression of inflammatory arthropathies. NR4A2 is overexpressed in synovium and cartilage from individuals with rheumatoid arthritis (RA), psoriatic arthritis, and osteoarthritis. This study documents the expression and tissue localization of NR4A2 and upstream regulator nuclear factor kappa B (NF-κB) in the human tumor necrosis factor-alpha (hTNF-α) transgenic mouse model of RA. Since TNF-α is a potent inducer of NR4A2 in vitro, we hypothesized that NR4A2 would also be upregulated and active during disease progression in this model. Expression levels of NR4A2, related receptors NR4A1 (Nur77) and 3 (NOR1), and NF-κB1 transcripts were quantified by RT-qPCR in hTNF-α and wild-type joints at three stages of disease. The protein distribution of NR4A2 and NF-κB subunit RelA (p65) was analyzed by quantitative immunohistochemistry. Global gene expression of 88 RA-related genes was also screened and compared between groups. Consistent with previous reports on the hTNF-α model, transgenic mice exhibited significant weight loss and severely swollen paws by 19 weeks of age compared to age-matched wild-type controls. NR4A1-3 and NF-κB1 were constitutively expressed at disease onset and in healthy joints. NF-κB1 transcript levels increased 2-fold in hTNF-α paws with established disease (12 weeks), followed by a 2-fold increase in NR4A2 at the late disease stage (19 weeks). NR4A2 and RelA proteins were overexpressed in inflamed synovium prior to symptoms of arthritis, suggesting that gene expression changes documented in whole paws were largely driven by elevated expression in diseased synovium. Broader screening of RA-related genes by RT-qPCR identified several differentially expressed genes in hTNF-α joints including those encoding inflammatory cytokines and chemokines, matrix-degrading enzymes and inhibitors, cell surface receptors, intracellular signaling proteins and transcription factors. Consensus binding sites for NR4A receptors and NF-κB1 were enriched in the promoters of differentially expressed genes suggesting central roles for these transcription factors in this model. This study is the first comprehensive analysis of NR4A2 in an animal model of RA and validates the hTNF-α model for testing of small molecules and genetic strategies targeting this transcription factor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.