A mechanically robust and ion-conductive polymeric coating containing two polymers, polyethylene glycol tert-octylphenyl ether and poly(allyl amine), with four tailored functional groups is developed for graphite and graphite-Si composite anodes. The coating, acting as an artificial solid electrolyte interphase, leads to remarkable enhancement in capacity reversibility and cycling stability, as well as a high-rate performance of the studied anodes.
A high-performance graphite-Si composite anode for Li-ion batteries containing Si nanoparticles (NPs) attached onto graphite microparticles was synthesized by adopting a polymer-blend of poly(diallyl dimethyl-ammonium chloride) and poly(sodium 4-styrenesulfonate). The polymer-blend enabled uniform distribution of Si NPs during synthesis and served as a robust artificial solid-electrolyte interphase that substantially enhanced the cycle stability and rate performance of the composite electrode. The electrode exhibited a specific capacity of 450 mA h g(-1), 96% capacity retention at a 10 C-rate, 95% retention after 200 cycles, and the same electrode expansion behavior as a pristine graphite electrode.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.